Example 2: Find the equation for a parabola given a focus at (3, 5) and a directrix at x = -1. Graph the parabola.

Example 3: Find the equation and graph the parabola that has a vertex at (-4, -2) and the directrix x = -2.

Example 4: Find the equation of a parabola that opens left or right, has the vertex (4, 1) and contains the point (5, -1).

- 1) Write the standard form of a left/right opening parabola.
- 2) Substitute in the vertex (h, k).
- 3) Substitute in the given point for x and y. Now solve for p.
- 4) Go back to step #2 and write the standard form including the p value.

Practice: Find the equation of the parabola with the given characteristics:

1. Vertex: (0, 6) Focus: (-3, 6)

3. Opens left or right

Vertex: (7, 6)

Passes through: (-11, 9)

5. Focus: (3, 0)Directrix: x = -3

2. Directrix: y = -4
Focus: (0, 4)

4. Vertex (8, - 1) y-intercept: - 17

6. Vertex: (5, - 2) Directrix: y = - 5

Write the standard form of the equation of each parabola. Sketch the graph and show the items in the list.

2. The equation of the axis of symmetry is y = 2, the focus is at (0, 2), and p = -3.

3. The parabola passes through the point at (-3, 1), has its vertex at (-2, -3), and opens to the left.

				Ш	\Box		71	°r	П	П	П	П	Ŧ
				Ш				8					\pm
Equation			-	H	-	-		6	H	+	$\pm \parallel$	+	\pm
Equation:			-	H	+	-	+	4	H	++	+	+	+
Axis of Symmetry:	_							2					$oxed{\mathbb{F}}$
Directrix:			-10	_B	-5	4	-2		7	14	1		‡
Vertex:	Focus:							4					Ŧ
Focal width:	p =		E					6		\parallel			\pm
								8				\pm	\pm
			1	1_1_1	11) -	L_L				
The arch in Erondom Park	has a parabolic shape. Its heig	ht ic 25 f	oot ·	and	ite	ha	CA	ic :	2O	foo	ŧν	vida	2
	has a parabolic shape. Its heig												Ž.
Find an equation, which mod	lels this shape, using the x -axis	to repre											3.
Find an equation, which mod		to repre											>.
Find an equation, which mod	lels this shape, using the x -axis	to repre											2.
Find an equation, which mod	lels this shape, using the x -axis	to repre											2.
Find an equation, which mod	lels this shape, using the x -axis	to repre											<u>.</u>
Find an equation, which mod	lels this shape, using the x -axis	to repre											2.
Find an equation, which mod	lels this shape, using the x -axis	to repre											2.
Find an equation, which mod square = 2 feet and put origin	lels this shape, using the <i>x</i> -axis non lower left corner of graph.	to repre											e.
Find an equation, which mod	lels this shape, using the <i>x</i> -axis non lower left corner of graph.	to repre											2.
Find an equation, which mod square = 2 feet and put origin	lels this shape, using the <i>x</i> -axis non lower left corner of graph.	to repre											
Find an equation, which mod square = 2 feet and put origin Equation: Axis of Symmetry:	lels this shape, using the <i>x</i> -axis non lower left corner of graph.	to repre											2.
Find an equation, which mod square = 2 feet and put origin Equation: Axis of Symmetry: Directrix:	lels this shape, using the <i>x</i> -axis non lower left corner of graph.	to repre											
Find an equation, which mod square = 2 feet and put origin Equation: Axis of Symmetry:	lels this shape, using the <i>x</i> -axis non lower left corner of graph.	to repre											2.
Find an equation, which mod square = 2 feet and put origin Equation: Axis of Symmetry: Directrix:	lels this shape, using the <i>x</i> -axis non lower left corner of graph.	to repre											P

4. The focus is at (3, 2), the distance from the focus to the vertex is 2 units, and the function has a

minimum.

Example 1: Find the equation of a parabola given the vertex at (3, 3) and a focus at (3, 0). Graph the information given

- Since the parabola opens down, the equation we need to use in
- standard form is:

Since the vertex is given we know h and k and can substitute h and k into the equation:

- We can also find p. $\beta = -3$ $(x-h)^2 = 4p(y-k)$
- The equation for the parabola is:
- $(x-h)^2 = -12(y-k)$

Graph the parabola and put in the directrix.

Example 2: Find the equation for a parabola given a focus at (3, 5) and a directrix at x = -1. Graph the parabola.

Since the parabola opens ______, the equation we need to use in standard

form is:

We can use the information given to find h and k which is the (4.5)parabola.

 $(y-5)^2=8(x-1)$

Substitute h and k into the equation:

We can also find p.

The equation for the parabola is:

Graph the parabola and put in the directrix.

Example 3: Find the equation and graph the parabola that has a vertex at (-4, -2) and the directrix x = -2.

$$p=-2$$
 $(y-k)^{2}=4p(x-h)$ $(y+2)^{2}=-8(x+4)$

Example 4: Find the equation of a parabola that opens left or right, has the vertex (4, 1) and contains the point (5, -1).

Write the standard form of a left/right opening parabola.

- $(y-k)^2=4p(x-h)$ $(-1-1)^2=4p(5-4)$
- Substitute in the vertex (h, k).
- 4=4p p=1
- Substitute in the given point for x and y. Now solve for p
 - $(y-1)^2 = 4(x-4)$
- Go back to step #2 and write the standard form including the p value.

Practice: Find the equation of the parabola with the given characteristics:

1. Vertex: (0, 6)

Focus: (- 3, 6)

(x-h)=4p(y-1x)2. Directrix: y = -4

3. Opens left or right $(y-1x)^2 = 4p(x-h)$ Vertex: (7, 6)Passes through: (-11,9)

opens down 4. Vertex (8, -1) y-intercept: - 17

vertex(0, 0) $(y-k)^{2}=4p(x-h)$ 5. Focus: (3, 0) Directrix: x = -3

6. Vertex: (5, -2) $(x-h)^2 = 4p(y-k)$ Directrix: y = -5 $(x-5)^2 = 12(y+2)$

LGPS Analytic Geometry

Parabolas Day 3 - Homework

Write the standard form of the equation of each parabola. Sketch the graph and show the items in the list.

1. The vertex is at (-5, 1), and the focus is at (-1, 1).

Equation:
$$(y-1)^2 = 16(x+5)$$

Axis of Symmetry: $y=1$

Directrix: $x=-9$

Vertex: $(-5,1)$

Focus: $(-1,1)$

Focal width: 16
 $p=4$

2. The equation of the axis of symmetry is y = 2, the focus is at (0, 2), and p = -3.

4p=12

Directrix: X = 2Vertex: (-2, -3)Focal width: 16 p = -4

4. The focus is at (3, 2), the distance from the focus to the vertex is 2 units, and the function has a minimum. opens up

- Equation: (x-3) = 8(y-0)
- Axis of Symmetry: X = 3
- Directrix: 4=-2
- Vertex: ____(3.6)
- Focal width: _____
 - 4p=8
- Focus: (3, 2) p = 2

- 5. The arch in Freedom Park has a parabolic shape. Its height is 25 feet and its base is 30 feet wide. Find an equation, which models this shape, using the x-axis to represent the ground. Hint: Use 1
- square = 2 feet and put origin on lower left corner of graph.

- Axis of Symmetry: X = +15

- Focus: (15, 25 15/8)p = -15/8
- Focal width:

- $(x-h)^2 = 4p(y-k)$
- (0-15)2=4p(0-30)
 - -15 = 4p
 - -15 =P