Problem 3-1

No Pythagorean triple has hypotenuse 18 or 19. The 12-16-20 (or 16-12-20) triple has the property we seek. That day can be written as Dec. 16, 2020 or as either 12-16-20 or 16-12-20.

Problem 3-2

A fraction like $a + \frac{1}{b + \frac{1}{c + \frac{1}{d}}}$ is called a *continued frac-*

tion. Use a "split and flip" approach. Split off the integer part to get 46/35 = 1 + 11/35. Now flip the fraction to get 46/35 = 1 + 1/(35/11). Repeat the procedure with 35/11 = 3 + 2/11 = 3 + 1/(11/2). Finally, since 11/2 = 5 + 1/2, the complete expansion is $46/35 = 1 + \frac{1}{3 + \frac{1}{12}}$, from which $d = \boxed{2}$.

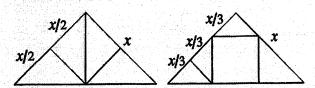
Problem 3-3

The first 5 palindromes greater than 9 999 are 10 001, 10 101, 10 201, 10 301, and 10 401.

Problem 3-4

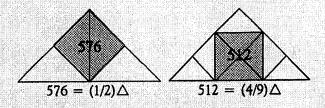
Let $y = \sqrt[3]{x}$, from which $x = y^3$. Substituting into the given equation, $(y^3)^y = (y^3)(y)$, or $y^{3y} = y^4$. Either both bases are equal to 1 or the exponents are equal. If y = 1, then x = 1. If not, then 3y = 4, and y = 4/3, from which x = 64/27. Both check, so the two possible values of x are $\frac{64}{27}$, $\frac{1}{3}$.

Problem 3-5



Call the original isosceles right triangle T. In the diagrams, let the length of each leg of T be x. In the left hand diagram, the vertical diagonal of the square partitions T into 4 congruent isosceles right triangles. Since each leg of T is x, the area of the square is $x^2/4$. In the other diagram, draw the segment shown to create 3 congruent isosceles right triangles, each with hypotenuse-length $x\sqrt{2}/3$. That's the length of a side of the square with area $2x^2/9$. Finally, since $x^2/4 = 576$, x = 48 and $2x^2/9 = 512$ is the area of the smaller square. (The ratio of the squares' areas is 9 to 8.)

A solution without words is shown below.



Problem 3-6

The sum of the polynomial's coefficients is P(1) = 8, so 8 is an upper bound for the value of any coefficient. In particular, the coefficients are single-digit integers. When written in base 10, P(10) is the sequence of the polynomial's coefficients. For example, If $P(x) = 3x^2 + 4x + 2$, then P(1) = 9 and P(10) = 342. Here, P(10) = 2312, so $P(x) = 2x^3 + 3x^2 + x + 2$. Hence, $P(2) = 2 \times 2^3 + 3 \times 2^2 + 2 + 2 = 16 + 12 + 2 + 2 = \boxed{32}$.