Mini-Mathletes 2015: SOLUTIONS

Round 1: Free Response

1. Mr. Yang bakes $7 \div 1 / 2=7 \times 2 / 1=14 / 1$, or 14 half-dozens of cookies. Thus, the total money Mr. Yang makes is $14 \times 4.25=59.5 \rightarrow \$ 59.50$.
2. We conclude that the total number of people in Milton's chorus group is one less than a multiple of 5 and also one less than a multiple of 6 . The lowest possible number to satisfy these two conditions is one less than the lowest common multiple of 5 and 6 . Since 5 and 6 are relatively prime, there are $(5 \times 6)-2=29$ people.
3. We can write the following equations from the details given in the problem:

$$
\begin{gathered}
E=3 K \\
T=6+K \\
E=T
\end{gathered}
$$

We are asked to solve for K. Substituting $3 K=E=T$ in the second equation above gives $3 K=6+K \rightarrow 2 K=6 \rightarrow K=3$ years old.
4. Perhaps the easiest way to solve this problem would be to set up a system of linear equations in two variables. Let's call the number of 2-point baskets Elena made x and the number of 3 -point baskets y. We have:

$$
\begin{gathered}
2 x+3 y=29 \\
x+y=11
\end{gathered}
$$

Multiplying the second equation by 2 and subtracting it from the first equation, we get that $y=29-2(11)=7$.
5. We are given that the surface area of the cube is $726 \mathrm{~cm}^{2}$, meaning that the area of each face of the cube is $726 / 6=121 \mathrm{~cm}^{2}$. Thus, the side length of the cube is $\sqrt{121}=11 \mathrm{~cm}$, and the volume is $11^{3}=1331 \mathrm{~cm}^{3}$. The ratio of the area to volume came out to be $\frac{726}{1331}=6 / 11$.
6. If the mean of seven positive integers is 16 , then their sum must be $7(16)=112$. If the sum of six of the seven integers is 108, then the removed integer has a value of $112-108=4$.
7. The minute hand rotates 360° in 1 hour, or 60 minutes. If the minute hand has rotated 810 degrees since noon, it has completed $810^{\circ} / 360^{\circ}=2.25$ revolutions. Since 1 revolution is equivalent to 60 minutes, $60(2.25)=135$ minutes have elapsed since noon.
8. In one hour, Harrison is able to complete $1 / 6$ of the painting job, while Sean is able to finish $1 / 12$ of it. Working together, Sean and Harrison are able to accomplish $(1 / 6+1 / 12)=1 / 4$ of the job in one hour. Thus, it will take them 4 hours to complete the entire painting job.
9. Note that the total area of the target is $\left(3^{2}\right) \pi=9 \pi$. The area of the blue region is

$$
9 \pi-\left(2^{2}\right) \pi=5 \pi .
$$

Thus, the probability that the point lies within the blue region is $\frac{5 \pi}{9 \pi}=5 / 9$.
10. Drop a perpendicular from point M to side $D C$. We'll call this point P. Because the radius of the semicircle is $6 / 2=3 \mathrm{~cm}$, and $\mathrm{AD}=6 \mathrm{~cm}$, MP will measure $3+6=9 \mathrm{~cm}$. Now, we will use the Pythagorean Theorem on the right triangle shown below:

We get $(M C)^{2}=(M P)^{2}+(P C)^{2}=9^{2}+3^{2} \rightarrow M C=3 \sqrt{\mathbf{1 0}}$ centimeters.

Round 2: Multiple Choice

1. Work backwards - Amy had 7 apples before she gave Patricia 3 apples. These 7 apples were half of Amy's 14 original apples. E
2. There are a total of 10 fully shaded squares, each with an area of $2 * 2=4$. Additionally, there are 10 triangles with area $1 / 2(2)(2)=2$. Finally, the area of the smaller triangle plus the area of the pentagon sum to 4 . Therefore, the total shaded area of the figure is $64 . D$
3. We reason that to have at least 2 people have birthdays in the same month, we need at least $12(2-1)+1=13$ people. Because if we have only 12 , they can be born each in a different month. So, in general, to have at least n people have birthdays in the same month, we need at least $12(n-1)+1$ people. Because if we have only $12(n-1)$, they can be born in such a way that each $n-1$ people were born in a different month. Thus, the answer is $12^{*}(8-1)+1=85 . D$
4. To make the number as small as possible, the smaller digits are placed in the highervalued positions. To make the number even, the larger even digit 4 must be in the units digit. The smallest possible even number is 12394 and 9 is in the tens place. E
5. Be careful not to confuse numbers in problems like this: we are only concerned with the times. Starting from 10:28 AM, we add on 500 minutes, or 8 hours and 20 minutes, to get to 6:48 PM when the cookies are thawed to a reasonable temperature. Next, adding on 89 seconds, or 1 minute and 29 seconds, brings the time to 6:49:29 PM. Finally, adding 25 minutes brings the time to 7:14:29 PM. Round the time down to get 7:14 PM. D
6. It is clear that $70=2 \times 5 \times 7$ is the largest positive integer less than 75 that has exactly 8 distinct factors, which are: $\{1,2,5,7,10,14,35,70\}$. A
7. Note that the problem say that Simeon has $1 / 3$ of the book left to read, not that he read $1 / 3$ of the book. Subtract $1-(1 / 3)$ and set the difference, $2 / 3$, equal to $12 / x$. The equivalent fraction with 12 in the numerator is 18 , representing a total of 18 days needed to read the book. Multiply 18 days by 17 pages per day to get the total of 306 pages. C
8. The mean, or average, is equal to the sum of all numbers divided by the number of numbers. If you have 7 classes, there are a total of 7 numbers. Do not be fooled by the question when it asks for the sum of 4 grades- some people tend to add an additional 4 to the denominator. For the lowest possible "successful" average, the mean must be 90%. Multiply that by 7 , and subtract the sum of the three given grades, 267. The difference is the lowest possible sum of the other grades, 363. B
9. The angles will be $30,30+x$, and $(30+2 x)$ degrees. . So $30+(30+x)+(30+2 x)=$ 180. Solving for x gives $x=60-30=30$. The largest angle will be $30+2 * 30=90$ degrees. A
10. Notice that

$$
7^{9}=\left(\frac{1}{343}\right)^{x}=\left(\frac{1}{7}\right)^{3 x}=7^{-3 x}
$$

This implies that $-3 \mathrm{x}=9$ and therefore $\mathrm{x}=-9 / 3=-3 . E$
11. Let x be the number of residents. Each resident bumps his head with $x-1$ residents. Hence $x(x-1)$ will be the number that each resident bumps his head with another. This will give us a double count. So we have to solve $x(x-1) / 2=45$. Solving for x, we get $\mathrm{x}=10$ as the positive solution. C
12. Add the two equations to get $18(\mathrm{x}+\mathrm{y})=35+91=126=18 \times 7$. Thus, $\mathrm{x}+\mathrm{y}=7$. B
13. Make a table:

	1	3	5
2	$1+2=3$	$3+2=5$	$5+2=7$
4	$1+4=5$	$3+4=7$	$5+4=9$
6	$1+6=7$	$3+6=9$	$5+6=11$

The table shows that seven of the nine equally likely events have prime numbers for their outcomes. So the probability of a prime outcome is $7 / 9$. D
14. Note that the diameter is as long as one side of the square. Therefore, the total area of the square is $16 \mathrm{R}^{2}$. The total unshaded area in the square is equal to the area of one circle, which is $\pi(2 R)^{2}=4 \pi R^{2}$. Subtract the area of the circle from the area of the square to get $16 R^{2}-4 \pi R^{2}$, or $4 R^{2}(4-\pi)$. D
15. There are one odd and two even numbers showing. Because all primes other than 2 are off and the sum of an even number and an odd number is odd, the common sum must be odd. That means 2 must be opposite 59 and the common sum is $2+59=61$. The other two hidden numbers are $61-44=17$ and $61-38=23$. The average of 2 , 17 , and 23 is $(2+17+23) / 3=42 / 3=14$. B

