Number Bases:

To understand the notion of base numbers, we look at our own number system. We use the decimal, or base-10, number system. To help explain what this means, consider the number 2746. This number can be rewritten as $2746_{10} = 2 \cdot 10^3 + 7 \cdot 10^2 + 4 \cdot 10^1 + 6 \cdot 10^0$. Note that each number in 2746 is actually just a placeholder which shows how many of a certain power of 10 there are.

Converting from base b to base 10

Example 1: what does 4201_5 mean? Just like base 10, the first digit to the left of the decimal place tells us how many 5^{0} 's we have, the second tells us how many 5^{1} 's we have, and so forth.

Converting from base 10 to base b.

Example 2: Write the base 10 number 216 in base 4.

*In base 4, each digit in a number represents the number of copies of that power of 4.

Converting from base b to non-base 10 base

Example 3: Convert 10100111₂ to base 4.

