Exercises

See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Evaluating a Function In Exercises 1-10, evaluate the function at the given value(s) of the independent variable. Simplify the results.

- 1. f(x) = 7x 4
 - (b) f(-3)(a) f(0)

 - (d) f(x-1)(c) f(b)
- 3. $g(x) = 5 x^2$
 - (a) g(0)

(b) $g(\sqrt{5})$

- (c) g(-2) (d) g(t-1)
- 5. $f(x) = \cos 2x$
 - (a) f(0) (b) $f(-\frac{\pi}{4})$ (a) $f(\pi)$ (b) $f(\frac{5\pi}{4})$
- 7. $f(x) = x^3$ $\frac{f(x+\Delta x)-f(x)}{\Delta x}$
- **9.** $f(x) = \frac{1}{\sqrt{x-1}}$ **10.** $f(x) = x^3 x$
 - $\frac{f(x)-f(2)}{x-2}$

- 2. $f(x) = \sqrt{x+5}$
 - (a) f(-4) (b) f(11)
 - (c) f(4)
- (d) $f(x + \Delta x)$
- 4. $g(x) = x^2(x-4)$
 - (a) g(4)(b) $g(\frac{3}{2})$
 - (d) g(t + 4)(c) g(c)
 - $6. \ f(x) = \sin x$
- (c) $f\left(\frac{\pi}{3}\right)$ (d) $f(\pi)$ (c) $f\left(\frac{2\pi}{3}\right)$ (d) $f\left(-\frac{\pi}{6}\right)$
 - **8.** f(x) = 3x 1
 - $\frac{f(x)-f(1)}{x-1}$

 - $\frac{f(x)-f(1)}{x-1} .$

Finding the Domain and Range of a Function In Exercises 11-22, find the domain and range of the function.

- 11. $f(x) = 4x^2$
- **12.** $g(x) = x^2 5$
- 13. $f(x) = x^3$
- 14. $h(x) = 4 x^2$
- **15.** $g(x) = \sqrt{6x}$
- **16.** $h(x) = -\sqrt{x+3}$
- 17. $f(x) = \sqrt{16 x^2}$
- **18.** f(x) = |x 3|
- **19.** $f(t) = \sec \frac{\pi t}{4}$
- **20.** $h(t) = \cot t$
- **21.** $f(x) = \frac{3}{x}$
- **22.** $f(x) = \frac{x-2}{x+4}$

Finding the Domain of a Function In Exercises 23–28, find the domain of the function.

- **23.** $f(x) = \sqrt{x} + \sqrt{1-x}$ **24.** $f(x) = \sqrt{x^2 3x + 2}$
- **25.** $g(x) = \frac{2}{1 \cos x}$ **26.** $h(x) = \frac{1}{\sin x (1/2)}$
- **27.** $f(x) = \frac{1}{|x+3|}$ **28.** $g(x) = \frac{1}{|x^2-4|}$

Finding the Domain and Range of a Piecewise Function In Exercises 29-32, evaluate the function as indicated. Determine its domain and range.

29.
$$f(x) = \begin{cases} 2x + 1, & x < 0 \\ 2x + 2, & x \ge 0 \end{cases}$$

(a)
$$f(-1)$$

- (a) f(-1) (b) f(0) (c) f(2) (d) $f(t^2 + 1)$

30.
$$f(x) = \begin{cases} x^2 + 2, & x \le 1 \\ 2x^2 + 2, & x > 1 \end{cases}$$

- (a) f(-2) (b) f(0) (c) f(1) (d) $f(s^2 + 2)$
- **31.** $f(x) = \begin{cases} |x| + 1, & x < 1 \\ -x + 1, & x \ge 1 \end{cases}$
 - (a) f(-3) (b) f(1) (c) f(3) (d) $f(b^2 + 1)$

32.
$$f(x) = \begin{cases} \sqrt{x+4}, & x \le 5 \\ (x-5)^2, & x > 5 \end{cases}$$

- (a) f(-3) (b) f(0) (c) f(5) (d) f(10)

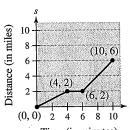
Sketching a Graph of a Function In Exercises 33-40, sketch a graph of the function and find its domain and range. Use a graphing utility to verify your graph.

- **33.** f(x) = 4 x
- **34.** $g(x) = \frac{4}{x}$
- **36.** $f(x) = \frac{1}{4}x^3 + 3$
- **35.** $h(x) = \sqrt{x-6}$ **37.** $f(x) = \sqrt{9-x^2}$
- 38. $f(x) = x + \sqrt{4 x^2}$
- **39.** $g(t) = 3 \sin \pi t$
- **40.** $h(\theta) = -5 \cos \frac{\theta}{2}$

WRITING ABOUT CONCEPTS

41. Describing a Graph

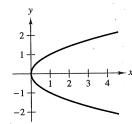
The graph of the distance that a student drives in a 10-minute trip to school is shown in the figure. Give a verbal description of the characteristics of the student's drive to school.

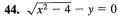


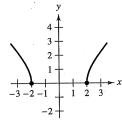
42. Sketching a Graph A student who commutes 27 miles to attend college remembers, after driving a few minutes, that a term paper that is due has been forgotten. Driving faster than usual, the student returns home, picks up the paper, and once again starts toward school. Sketch a possible graph of the student's distance from home as a function of time.

Using the Vertical Line Test In Exercises 43–46, use the Vertical Line Test to determine whether y is a function of x. To print an enlarged copy of the graph, go to MathGraphs.com.

43.
$$x - y^2 = 0$$

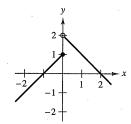






45.
$$y = \begin{cases} x+1, & x \le 0 \\ -x+2, & x > 0 \end{cases}$$

46.
$$x^2 + y^2 = 4$$



Deciding Whether an Equation Is a Function In Exercises 47–50, determine whether y is a function of x.

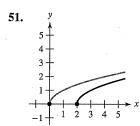
47.
$$x^2 + y^2 = 16$$

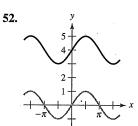
48.
$$x^2 + y = 16$$

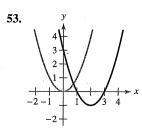
49.
$$y^2 = x^2 - 1$$

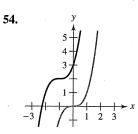
50.
$$x^2y - x^2 + 4y = 0$$

Transformation of a Function In Exercises 51-54, the graph shows one of the eight basic functions on page 22 and a transformation of the function. Describe the transformation. Then use your description to write an equation for the transformation.

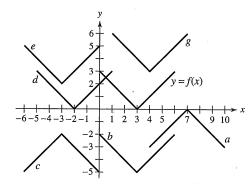








Matching In Exercises 55–60, use the graph of y = f(x) to match the function with its graph.



55.
$$y = f(x + 5)$$

56.
$$y = f(x) - 5$$

57.
$$y = -f(-x) - 2$$

58.
$$y = -f(x - 4)$$

59.
$$y = f(x + 6) + 2$$

60.
$$y = f(x - 1) + 3$$

61. Sketching Transformations Use the graph of f shown in the figure to sketch the graph of each function. To print an enlarged copy of the graph, go to MathGraphs.com.

(a)
$$f(x + 3)$$
 (b) $f(x - 1)$

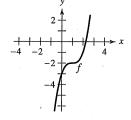
(c)
$$f(x) + 2$$
 (d) $f(x) - 4$

(e)
$$3f(r)$$

(f)
$$\frac{1}{4}f(x)$$

$$(g) - f(x)$$

(e)
$$3f(x)$$
 (f) $\frac{1}{4}f(x)$ (g) $-f(x)$ (h) $-f(-x)$



62. Sketching Transformations Use the graph of f shown in the figure to sketch the graph of each function. To print an enlarged copy of the graph, go to MathGraphs.com.

(a)
$$f(x-4)$$
 (b) $f(x+2)$

(c)
$$f(x) + 4$$
 (d) $f(x) - 1$

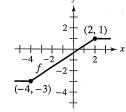
(d)
$$f(x)$$
 –

(e)
$$2f(x)$$

(f)
$$\frac{1}{2}f(x)$$

(g)
$$f(-x)$$

(h)
$$-f(x)$$



Combinations of Functions In Exercises 63 and 64, find (a) f(x) + g(x), (b) f(x) - g(x), (c) $f(x) \cdot g(x)$, and (d) f(x)/g(x).

63.
$$f(x) = 3x - 4$$

64.
$$f(x) = x^2 + 5x + 4$$

$$g(x) = 4$$

$$g(x) = x + 1$$

65. Evaluating Composite Functions Given
$$f(x) = \sqrt{x}$$
 and $g(x) = x^2 - 1$, evaluate each expression.

(a)
$$f(g(1))$$

(b)
$$g(f(1))$$

(c)
$$g(f(0))$$

(d)
$$f(g(-4))$$

(e)
$$f(g(x))$$

(f)
$$g(f(x))$$

66. Evaluating Composite Functions Given
$$f(x) = \sin x$$
 and $g(x) = \pi x$, evaluate each expression.

(a)
$$f(g(2))$$

(b)
$$f\left(g\left(\frac{1}{2}\right)\right)$$

(c)
$$g(f(0))$$

(d)
$$g\left(f\left(\frac{\pi}{4}\right)\right)$$
 (e) $f(g(x))$ (f) $g(f(x))$

(f)
$$g(f(x))$$

Finding Composite Functions In Exercises 67-70, find the composite functions $f \circ g$ and $g \circ f$. Find the domain of each composite function. Are the two composite functions equal?

67.
$$f(x) = x^2$$
, $g(x) = \sqrt{x}$

67.
$$f(x) = x^2$$
, $g(x) = \sqrt{x}$ **68.** $f(x) = x^2 - 1$, $g(x) = \cos x$

69.
$$f(x) = \frac{3}{x}$$
, $g(x) = x^2 - \frac{3}{x}$

69.
$$f(x) = \frac{3}{x}$$
, $g(x) = x^2 - 1$ **70.** $f(x) = \frac{1}{x}$, $g(x) = \sqrt{x+2}$

71. Evaluating Composite

Functions Use the graphs of fand g to evaluate each expression. If the result is undefined, explain why.

(b)
$$g(f(2))$$

(c)
$$g(f(5))$$

(d)
$$(f \circ g)(-3)$$

(e)
$$(g \circ f)(-1)$$
 (f) $f(g(-1))$

(f)
$$f(a(-1))$$



72. **Ripples** A pebble is dropped into a calm pond, causing ripples in the form of concentric circles. The radius (in feet) of the outer ripple is given by r(t) = 0.6t, where t is the time in seconds after the pebble strikes the water. The area of the circle is given by the function $A(r) = \pi r^2$. Find and interpret $(A \circ r)(t)$.

Think About It In Exercises 73 and 74, $F(x) = f \circ g \circ h$. Identify functions for f, g, and h. (There are many correct answers.)

73.
$$F(x) = \sqrt{2x-2}$$
 74. $F(x) = -4\sin(1-x)$

Think About It In Exercises 75 and 76, find the coordinates of a second point on the graph of a function f when the given point is on the graph and the function is (a) even and (b) odd.

75.
$$\left(-\frac{3}{2},4\right)$$
 76. $(4,9)$

77. Even and Odd Functions The graphs of f, g, and h are shown in the figure. Decide whether each function is even, odd, or neither.

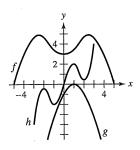


Figure for 77

Figure for 78

- 78. Even and Odd Functions The domain of the function f shown in the figure is $-6 \le x \le 6$.
 - (a) Complete the graph of f given that f is even.
 - (b) Complete the graph of f given that f is odd.

Even and Odd Functions and Zeros of Functions In Exercises 79–82, determine whether the function is even, odd, or neither. Then find the zeros of the function. Use a graphing utility to verify your result.

79.
$$f(x) = x^2(4 - x^2)$$

80.
$$f(x) = \sqrt[3]{x}$$

$$\mathbf{81.}\ f(x) = x\cos x$$

82.
$$f(x) = \sin^2 x$$

Writing Functions In Exercises 83–86, write an equation for a function that has the given graph.

- **83.** Line segment connecting (-2, 4) and (0, -6)
- **84.** Line segment connecting (3, 1) and (5, 8)
- **85.** The bottom half of the parabola $x + y^2 = 0$
- **86.** The bottom half of the circle $x^2 + y^2 = 36$

Sketching a Graph In Exercises 87–90, sketch a possible graph of the situation.

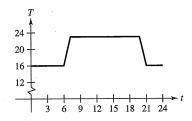
87. The speed of an airplane as a function of time during a 5-hour aflight

- **88.** The height of a baseball as a function of horizontal distance during a home run
- **89.** The amount of a certain brand of sneaker sold by a sporting goods store as a function of the price of the sneaker
- **90.** The value of a new car as a function of time over a period of 8 years
- **91. Domain** Find the value of c such that the domain of $f(x) = \sqrt{c x^2}$ is [-5, 5].
- **92. Domain** Find all values of c such that the domain of

$$f(x) = \frac{x+3}{x^2 + 3cx + 6}$$

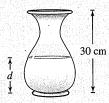
is the set of all real numbers.

93. Graphical Reasoning An electronically controlled thermostat is programmed to lower the temperature during the night automatically (see figure). The temperature T in degrees Celsius is given in terms of t, the time in hours on a 24-hour clock.



- (a) Approximate T(4) and T(15).
- (b) The thermostat is reprogrammed to produce a temperature H(t) = T(t-1). How does this change the temperature? Explain.
- (c) The thermostat is reprogrammed to produce a temperature H(t) = T(t) 1. How does this change the temperature? Explain.

HOW DO YOU SEE IT? Water runs into a vase of height 30 centimeters at a constant rate. The vase is full after 5 seconds. Use this information and the shape of the vase shown to answer the questions when d is the depth of the water in centimeters and t is the time in seconds (see figure).



- (a) Explain why d is a function of t.
- (b) Determine the domain and range of the function.
- (c) Sketch a possible graph of the function.
- (d) Use the graph in part (c) to approximate d(4). What does this represent?

Year	1960	1970	1980	1990	2000	2010
Acreage	.297	374	429	460	436	418

- (a) Plot the data, where A is the acreage and t is the time in years, with t = 0 corresponding to 1960. Sketch a freehand curve that approximates the data.
- (b) Use the curve in part (a) to approximate A(25).

• 96. Automobile Aerodynamics • • •

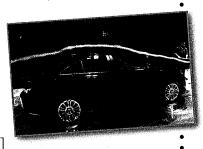
The horsepower H required to overcome wind drag on a certain automobile is approximated by

$$H(x) = 0.002x^2 + 0.005x - 0.029, \quad 10 \le x \le 100$$

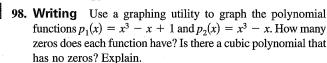
where x is the speed of the car in miles per hour.

30

- (a) Use a graphing utility to graph *H*.
- (b) Rewrite the power function so that x represents the speed in kilometers per hour. [Find H(x/1.6).]



97. Think About It Write the function f(x) = |x| + |x - 2| without using absolute value signs. (For a review of absolute value, see Appendix C.)



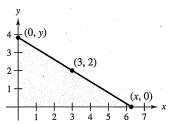
99. Proof Prove that the function is odd.

$$f(x) = a_{2n+1}x^{2n+1} + \cdots + a_3x^3 + a_1x$$

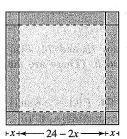
100. Proof Prove that the function is even.

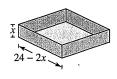
$$f(x) = a_{2n}x^{2n} + a_{2n-2}x^{2n-2} + \cdots + a_2x^2 + a_0$$

- **101. Proof** Prove that the product of two even (or two odd) functions is even.
- **102. Proof** Prove that the product of an odd function and an even function is odd.
- **103.** Length A right triangle is formed in the first quadrant by the x- and y-axes and a line through the point (3, 2) (see figure). Write the length L of the hypotenuse as a function of x.



104. Volume An open box of maximum volume is to be made from a square piece of material 24 centimeters on a side by cutting equal squares from the corners and turning up the sides (see figure).





- (a) Write the volume V as a function of x, the length of the corner squares. What is the domain of the function?
- (b) Use a graphing utility to graph the volume function and approximate the dimensions of the box that yield a maximum volume.
- (c) Use the *table* feature of a graphing utility to verify your answer in part (b). (The first two rows of the table are shown.)

Height, x	Length and Width	Volume, V
1	24 - 2(1)	$1[24 - 2(1)]^2 = 484$
2	24 - 2(2)	$2[24 - 2(2)]^2 = 800$

True or False? In Exercises 105–110, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.

- **105.** If f(a) = f(b), then a = b.
- **106.** A vertical line can intersect the graph of a function at most once
- 107. If f(x) = f(-x) for all x in the domain of f, then the graph of f is symmetric with respect to the y-axis.
- 108. If f is a function, then

$$f(ax) = af(x).$$

- **109.** The graph of a function of x cannot have symmetry with respect to the x-axis.
- **110.** If the domain of a function consists of a single number, then its range must also consist of only one number.

PUTNAM EXAM CHALLENGE

- **111.** Let R be the region consisting of the points (x, y) of the Cartesian plane satisfying both $|x| |y| \le 1$ and $|y| \le 1$. Sketch the region R and find its area.
- 112. Consider a polynomial f(x) with real coefficients having the property f(g(x)) = g(f(x)) for every polynomial g(x) with real coefficients. Determine and prove the nature of f(x).

These problems were composed by the Committee on the Putnam Prize Competition. © The Mathematical Association of America. All rights reserved.