Solve for x by Factoring

$$6x^2 - 14x = 12$$

2)
$$4x^2 = 100$$

Factored Form:

Factored Form:

Solution:

Solution:

Identify any intercepts (if any) and test for symmetry $y^2 = x^3 - 9x$ 3)

x-intercept(s): _____ y-intercept: ____ Symmetry: ____

- 4) Identify the type(s) of symmetry for: $5x^3y^4 + 3x^7y^3 12x = 0$
- 5) Find the point(s) of intersection (ordered pairs!) of the graphs of the equations:

$$x^2 + y^2 = 5$$

$$x - y = 1$$

6) Find an equation of the line (point-slope form) that passes through the points (2, -1) and (-4, 6)

7) Find an equation of the line (point-slope form) containing the point (-1, 5) that is perpendicular to the line 2x + 3y = 19

- 8) Find an equation of the line (point-slope form) containing the point (-5, 1) that is parallel to the line
- -9x 4y + 21 = 0

9) Write an equation of the line that passes through (-3, -5) and is parallel to the line y = 1

Write an equation of the line that passes through (1, 3) and is perpendicular to the line x = -2

Solve for x by Factoring

 $() 1) 6x^2 - 14x = 12$ 6x-14x-12=0 $2(3x^2-7x-6)=0$ 2(3x+2)(x-3)=03x+2=0 X-3=0X=-2/3 X=3

Factored Form: 2(3x+2)(x-3)

Solution: $x = \frac{3}{3}$

2) $4x^2 = 100$ $4x^2 - 100 = 0$ $4(x^2-25)=0$ 4(x+5)(x-5)=0 X+5=0 X-5=0 $X = -5 \mid X = 5$

Factored Form: 4(x+5)(x-5)

Solution: X = -5, 5

Set y=0 | 0=x(x+3)(x-3) | set x=0 | $(-y)^2=x^3-9x$ | $(-y)^2=x^2-9x$ | $(-y)^2=x^3-9x$ | (-y)3) Identify any intercepts (if any) and test for symmetry $0 = x(x^2-9)$

x-intercept(s): (0,0) (30), (-3,0) y-intercept: (0,0) Symmetry: x-axis symmetry origin symmetry

4) Identify the type(s) of symmetry for: $5x^3y^4 + 3x^7y^3 - 12x = 0$ X have odd degrees origin symmetry

5) Find the point(s) of intersection (ordered pairs!) of the graphs of the equations:

$$x^{2}+y^{2}=5
x-y=1
x^{2}+(x-1)^{2}=5
x^{2}+(x-1)(x-1)=5
x^{2}+x^{2}-2x+1=5
2x^{2}-2x-4=0
2(x^{2}-x-2)=0$$

2(x-2)(x+1)=0X-2=0 | X+1=0 * y=x-1 y=x-1 y=2-1 y=-1-1 y=-2(2,1) (-1,-2)

6) Find an equation of the line (point-slope form) that passes through the points (2, -1) and (-4, 6)

$$m = \frac{6-1}{4-2} = \frac{7}{6}$$

$$point: (2,-1)$$

$$y + 1 = -\frac{7}{6}(x-2)$$

$$y - 6 = -\frac{7}{6}(x+4)$$

7) Find an equation of the line (point-slope form) containing the point (-1, 5) that is perpendicular to the line

$$3y = -2x + 19$$

$$y = \frac{-2}{3}x + \frac{19}{3}$$

$$m_{1} = \frac{-2}{3}$$

$$point: (-1,5) slope: m = \frac{3}{2}$$

$$y - y_{1} = m(x - x_{1})$$

$$y - 5 = \frac{3}{2}(x + 1)$$

8) Find an equation of the line (point-slope form) containing the point (-5, 1) that is parallel to the line

$$9x-4y+21=0
-4y=-9x-21
4y=9x+21
y=\frac{9}{4}x+\frac{21}{4}
y=\frac{9}{4}x+\frac{21}{4}
\frac{9}{4}-1=\frac{9}{4}(x+5)$$

9) Write an equation of the line that passes through (-3, -5) and is parallel to the line y = 1

Write an equation of the line that passes through (1, 3) and is perpendicular to the line x = -2

