Geometry
Quiz Review
Special Segments & Points of Concurrency

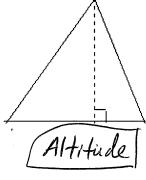
Name:	Key		
Date:	O	Period:	

For #1-7, fill in the correct answer.

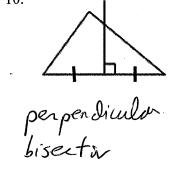
- 1. The point equidistant from the vertices of a triangle is the <u>Circumcenter</u>.
- 2. The distance from the vertex to the <u>centroid</u> is two thirds the length of the median.
- 3. The point of concurrency for the medians is called the <u>centroid</u>.
- 4. The point of concurrency for the perpendicular bisectors is called the <u>Circumum ter</u>.
- 5. The point of concurrency for the lines containing the altitudes is called the <u>ortholenter</u>.
- 6. The point of concurrency for the angle bisectors is called the incenter
- 7. The point equidistant from the sides of the triangle is the <u>incenter</u>

For #8-13, identify the type of segment in each triangle.

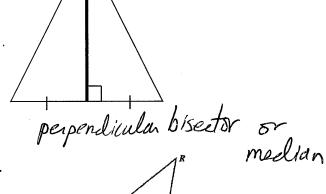
8.



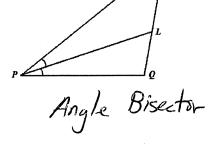
10.



9.

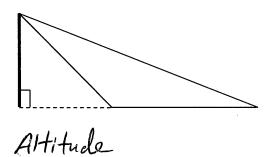


11.

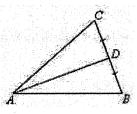


Date: _____ Period: ____

12.

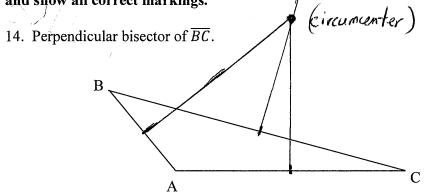


13.

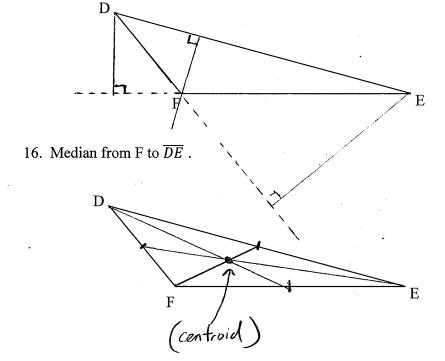


median

For #14 & 16, use a ruler to draw the indicated segments of the triangle. You must be accurate and show all correct markings.



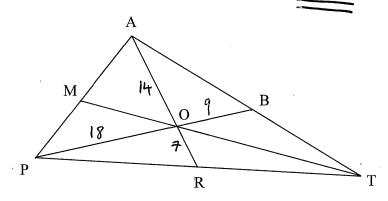
15. Altitude from D to \overline{EF} .



Geometry Quiz Review Special Segments & Points of Concurrency Name:

Date: Period:

Use the following diagram for #17-21. T is the centroid of \triangle PAT.



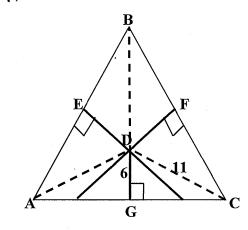
17. If PB = 27, then PO =
$$\frac{18}{100}$$

18. If
$$AO = 14$$
, then $OR = \frac{7}{}$

19. If BO = 5, then BP =
$$15$$

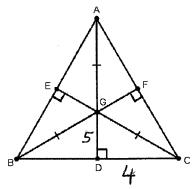
20. If TO = 16, then TM =
$$\frac{24}{}$$

Use the following diagram for #22 - 24. Point D is the circumcenter of \triangle ABC. DC = 11, DG = 6

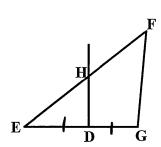


Use the following diagram for #25 - 27. Point G is the incenter of \triangle ABC. DC = 4, GF = 5, $m \angle ABC = 50^{\circ}$

26. m
$$\angle ABF = 25^{\circ}$$



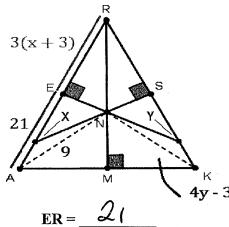
28. In $\triangle EFG$, \overline{DH} is a perpendicular bisector of \overline{EG} with D on \overline{EG} . If ED = 7x + 10, GD = 9x - 102, and m \angle HDG = $(4y + 2)^{0}$. Find the value of x and y. Show work.



$$7 \times +10 = 9 \times -2$$
 $4y + 2 = 90$
 $12 = 2 \times$ $4y = 88$
 $6 = \times 1$ $4y = 88$

$$4y+2=90$$
 $4y=88$
 $y=22$

29. N is the circumcenter of \triangle ARK.



$$3(x+3)=21$$

 $3x+9=21$
 $3x=12$
 $x=41$

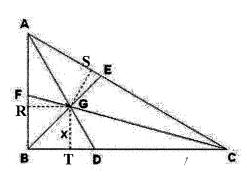
$$4y-3=9$$
 $4y=12$
 $y=3$

$$ER = \frac{21}{9}$$

$$EN = \frac{9}{9}$$

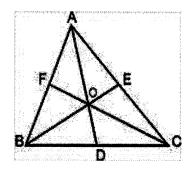
Date: Period:

30. G is the incenter of $\triangle ABC$. $\overline{GR} \perp \overline{AB}$, $\overline{GT} \perp \overline{BC}$, $\overline{GS} \perp \overline{AC}$; $\overline{GR} = 7$, and $m \neq BAC = 60^{\circ}$.



$$GT = \frac{7}{7}$$

31. O is the centroid of \triangle ABC. Each question is unrelated to the previous question.

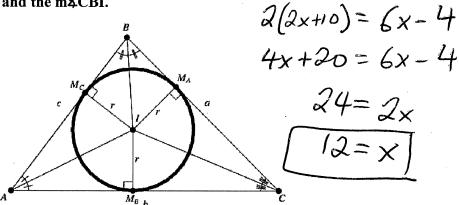


a. If
$$CO = 6$$
, then $OF = 3$

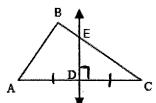
c. If BF = 4, then AF =
$$\frac{4}{4}$$

d. If
$$OE = 5$$
, then $BO = /O$

32. I is the incenter of $\triangle ABC$. Let m $\angle ABC = (6x - 4)^0$ and m $\angle ABI = (2x + 10)^0$. Find x and the m&CBI.



Date: _____ Period: ____



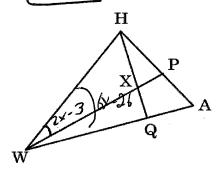
In $\triangle ABC$, \overline{DE} is a perpendicular bisector of \overline{AC} with D on \overline{AC} .

33. If $m \neq EDC = (2y + 12)^0$. Find the value of y.

$$2y+12=90$$
 $y=39$
 $2y=78$

34. If AD = 2x + 6 and DC = 4x - 42. Find the value of x.

$$4x-42 = 2x+6$$
 $2x=48$
 $(x=24)$



35. \overline{WP} is a median and an angle bisector of $\triangle HWA$.

 $m \not\perp HWP = (2x-3)^0$ and $m \not\perp HWA = (6x-26)^0$. Find x.

$$2(2x-3)=6x-26$$

$$4x-6=6x-26$$

Name 564	Date	e	Class Period
			

Point of Concurrency Worksheet

Give the name the point of concurrency for each of the following.

- 1. Angle Bisectors of a Triangle <u>Incenter</u>
- 2. Medians of a Triangle Centroid
- 3. Altitudes of a Triangle Orthocenter
- 4. Perpendicular Bisectors of a Triangle Circumcenter

Complete each of the following statements.

- 5. The *incenter* of a triangle is equidistant from the <u>Sides</u> of the triangle.
- 6. The *circumcenter* of a triangle is equidistant from the <u>Vertices (comes</u>) of the triangle.
- 7. The *centroid* is <u>two-third</u> sof the distance from each vertex to the midpoint of the opposite side.
- 8. To inscribe a circle about a triangle, you use the incenter (Angle Bisector)
- 9. To circumscribe a circle about a triangle, you use the <u>Circum center</u> (perpendicular bisector)
- 10. Complete the following chart. Write if the point of concurrency is <u>inside</u>, <u>outside</u>, or <u>on the triangle</u>.

:	Acute Δ	Obtuse \Delta	Right \Delta
Circumcenter	insicle	outside	on triangle
Incenter	inside	inside	inside
Centroid	inside	inside	inside
Orthocenter	insida	outside	on triangle

In the diagram, the perpendicular bisectors (shown with dashed segments) of $\triangle ABC$ meet at point G--the <u>circumcenter</u>, and are shown dashed. Find the indicated measure.

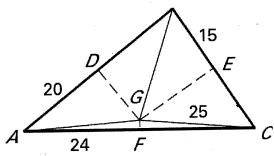
11.
$$AG = 25$$
 12. $BD = 20$

$$_{12.\;\mathrm{BD}}=$$
 \mathcal{Q} \mathcal{O}

13.
$$CF = 24$$
 14. $AB = 40$

15.
$$CE = 15$$
 16. $AC = 48$

16.
$$AC = 48$$



18. IF BG =
$$(2x - 15)$$
, find x.

$$x = 20$$

In the diagram, the perpendicular bisectors (shown with dashed segments) of $\triangle MNP$ meet at point O—the circumcenter. Find the M indicated measure.

19.
$$MO = 26.8$$
 20. $PR = 26$

21.
$$MN = 46$$

21.
$$MN = 46$$
 22. $SP = 22$

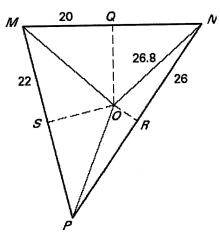
23.
$$m \angle MQO = 90^{\circ}$$

24. If
$$OP = 2x$$
, find x.

$$2x = 26.8$$

$$x = 13.4$$

$$\sqrt{x=13.4}$$

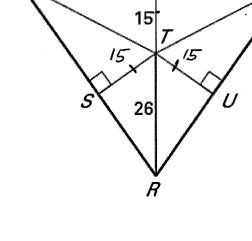


Point T is the <u>incenter</u> of ΔPQR .

25. If Point T is the *incenter*, then Point T is the point of concurrency of

the Angle Bisector

27. If TU = (2x - 1), find x. 2x - 1 = 15



W

Q

- 28. If $m\angle PRT = 24^\circ$, then $m\angle QRT = 24^\circ$
- 29. If $m\angle RPQ = 62^{\circ}$, then $m\angle RPT = 31^{\circ}$

Point G is the <u>centroid</u> of \triangle ABC, AD = 8, AG = 10, BE = 10, AC = 16 and CD = 18. Find the length of each segment.

30. If Point G is the *centroid*, then Point T is the point of concurrency of

the *median*

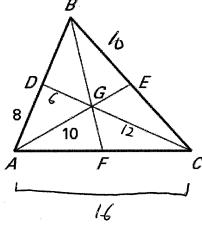
31.
$$DB =$$

32.
$$EA = 15$$

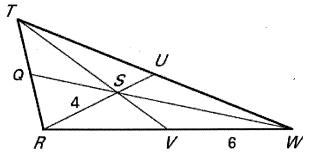
33.
$$CG = 12$$

34. BA =
$$\frac{16}{}$$

37. BC =
$$20$$



Point S is the <u>centroid</u> of $\triangle RTW$, RS = 4, VW = 6, and TV = 9. Find the length of each segment.



Point G is the centroid of $\triangle ABC$. Use the given information to find the value of the variable.

45.
$$FG = x + 8$$
 and $GA = 6x - 4$

$$2(x+8) = 6x-4$$

 $2x+16 = 6x-4$

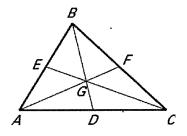
$$20 = 4x$$

$$x=5$$
 $5=x$

46. If
$$CG = 3y + 7$$
 and $CE = 6y$

$$CG = \frac{2}{3}(EC)$$
 $3y+7=\frac{2}{3}(6y)$

$$y = 7$$

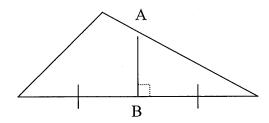


$$3y + 7 = 4y$$

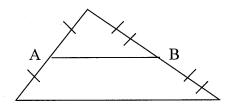
$$7 = y$$

Is segment AB a midsegment, perpendicular bisector, angle bisector, median, altitude, or none of these?

47)

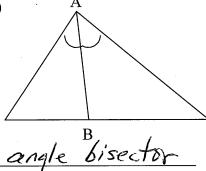


48)

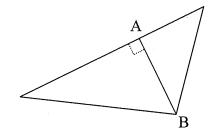


perpendicular bisector

49)



50)



51)

