Name____

Proving Lines are parallel

Transitive Property of Equality

If a = b and b = c, then a = c.

If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$

Substitution Property of Equality

If a = b, then a can be substituted for b in any equation or expression

If $m \angle A = 50^{\circ}$ and $m \angle B = 50^{\circ}$ then $m \angle A = m \angle B$.

GOAL

Prove that two lines are parallel and use properties of parallel lines to solve problems

VOCABULARY

Postulate 16 Corresponding Angles Converse If two lines are cut by a transversal so that corresponding angles are congruent, then the lines are parallel.

Theorem 3.8 Alternate Interior Angles Converse If two lines are cut by a transversal so that alternate interior angles are congruent, then the lines are parallel.

Theorem 3.9 Consecutive Interior Angles Converse If two lines are cut by a transversal so that consecutive interior angles are supplementary, then the lines are parallel.

Theorem 3.10 Alternate Exterior Angles Converse If two lines are cut by a transversal so that alternate exterior angles are congruent, then the lines are parallel.

EXAMPLE 1

Proving that Two Lines are Parallel

Prove that lines j and k are parallel.

SOLUTION

Given: $m \angle 1 = 53^{\circ}$

 $m \angle 2 = 127^{\circ}$

Prove: $j \parallel k$

Statements	Reasons			
1. $m \angle 1 = 53^{\circ}$	1.			
$m\angle 2 = 127^{\circ}$				
2. $m \angle 3 + m \angle 2 = 180^{\circ}$	2.			
3. $m \angle 3 + 127^{\circ} = 180^{\circ}$	3.			
4. $m \angle 3 = 53^{\circ}$	4.			
5. ∠3 ≅ ∠1	5			
6 . <i>j</i> <i>k</i>	6.			

Exercises for Example 1

Prove the statement from the given information.

1. Prove: $\ell \parallel m$

2. Prove: $n \parallel o$

EXAMPLE 2 Identifying Parallel Lines

Determine which rays are parallel.

- **a.** Is \overrightarrow{PN} parallel to \overrightarrow{SR} ?
- **b.** Is \overrightarrow{PO} parallel to \overrightarrow{SQ} ?

SOLUTION

a. Decide whether $\overrightarrow{PN} \parallel \overrightarrow{SR}$.

b. Decide whether $\overrightarrow{PO} \parallel \overrightarrow{SQ}$.

Exercises for Example 2

Find the value of x that makes $a \parallel b$.

3.

Practice A

For use with pages 150-156

is it possible to prove that lines p and q are parallel? If so, state the postulate or theorem you would use.

1.

2.

3.

4.

5.

6.

Find the value of x that makes $p \parallel q$.

7.

8.

9.

Use the diagram and the given information to determine which lines are parallel.

14. Complete the two-column proof of the Alternate Exterior Angles Converse Theorem.

Prove:
$$\ell \parallel m$$

Statements	Reasons
1. ∠1 ≅ ∠2	1

3.
$$\angle 2 \cong \angle 3$$
 3. _____

Practice B

For use with pages 150-156

Is it possible to prove that lines p and q are parallel? If so, state the postulate or theorem you would use.

1.

2.

3.

Find the value of x that makes $p \parallel q$.

4.

5.

6.

Choose the word(s) that best completes the statement.

- 7. If two lines are cut by a transversal so that alternate interior angles are (congruent, supplementary, complementary), then the lines are parallel.
- 8. If two lines are cut by a transversal so that consecutive interior angles are (congruent, supplementary, complementary), then the lines are parallel.
- 9. If the lines are cut by a transversal so that (alternate interior, alternate exterior, corresponding) angles are congruent, then the lines are parallel.
- 10. Complete the two-column proof.

Given: $\ell \parallel m, \angle 1 \cong \angle 2$

Prove: $a \parallel b$.

Statements	Reasons			
1. ℓ <i>m</i>	1			

Statements Reasons

11. Write a two-column proof.

Given: $\ell \parallel m, \angle 1 \cong \angle 2$

Prove: $a \parallel b$

1. \$11 m a. <12<2 3. <12<3

1243

Name

Analytic Geometry Notes 9/8/2014

Proving Lines are parallel

Transitive Property of Equality

If a = b and b = c, then a = c.

If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$

Substitution Property of Equality

If a = b, then a can be substituted for b in any equation or expression

If $m \angle A = 50^{\circ}$ and $m \angle B = 50^{\circ}$ then $m \angle A = m \angle B$.

GOAL

Prove that two lines are parallel and use properties of parallel lines to solve problems

VOCABULARY

Postulate 16 Corresponding Angles Converse If two lines are cut by a transversal so that corresponding angles are congruent, then the lines are parallel.

Theorem 3.8 Alternate Interior Angles Converse If two lines are cut by a transversal so that alternate interior angles are congruent, then the lines are parallel.

Theorem 3.9 Consecutive Interior Angles Converse If two lines are cut by a transversal so that consecutive interior angles are supplementary, then the lines are parallel.

Theorem 3.10 Alternate Exterior Angles Converse If two lines are cut by a transversal so that alternate exterior angles are congruent, then the lines are parallel.

EXAMPLE 1

Proving that Two Lines are Parallel

Prove that lines j and k are parallel.

21812

SOLUTION

Given:
$$m \angle 1 = 53^{\circ}$$

$$m \angle 2 = 127^{\circ}$$

Prove: $j \parallel k$

	2/3	
-	0-/~	~

Statements

1.
$$m \angle 1 = 53^{\circ}$$

$$m\angle 2 = 127^{\circ}$$

2.
$$m \angle 3 + m \angle 2 = 180^{\circ}$$

3.
$$m \angle 3 + 127^{\circ} = 180^{\circ}$$

4.
$$m \angle 3 = 53^{\circ}$$

6.
$$i \| k$$

Reasons

- 1. Given
- 2. Linear Pair Postulate.
- 3. Substitution 4. subtract

- 4. 5416 Traci 5. 546 stitute 6. Corresponding Angles are congruent

Exercises for Example 1

Prove the statement from the given information.

1. Prove: $\ell \parallel m$

2. Prove: $n \parallel o$

EXAMPLE 2

Identifying Parallel Lines

Determine which rays are parallel.

- **a.** Is \overrightarrow{PN} parallel to \overrightarrow{SR} ?
- **b.** Is \overrightarrow{PO} parallel to \overrightarrow{SQ} ?

1400

SOLUTION

a. Decide whether $\overrightarrow{PN} \parallel \overrightarrow{SR}$.

LNPS and LPSR are alt interior angles

IF PN 11 SR, then LNPS = LPSR

 $LNPS = 39+101 = 140^{\circ}$ 7 Since $ZNPS \cong LPSR$ \overrightarrow{PNII} \overrightarrow{SR} $LPSR = 98+42 = 140^{\circ}$ \overrightarrow{SQ} .

-\$0 LPSQ = 980

LOPS \$ LPSQ so PQ and SQ not

Exercises for Example 2

Find the value of x that makes $a \parallel b$.

X=2x-120

X = 120°

$$6x = 180$$

Practice A

For use with pages 150-156

Is it possible to prove that lines p and q are parallel? If so, state the postulate or theorem you would use.

Find the value of x that makes $p \parallel q$.

Use the diagram and the given information to determine which lines are parallel.

14. Complete the two-column proof of the Alternate Exterior Angles Converse Theorem.

Given: $\angle 1 \cong \angle 2$

Copyright © McDougal Littell Inc. All rights reserved.

Statements	Reasons
1. ∠1 ≅ ∠2	
2 /1 \approx /3	2 West angles =

2.	$\angle 1$	\cong	$\angle 3$	2.	KU	7.	an	1187	Special
_					5		1.9		6

Practice B

For use with pages 150-156

consec. interior supplementary
agree supplementary
79+48+53=180

Is it possible to prove that lines p and q are parallel? If so, state the (NARSP. 58+74=132

Find the value of x that makes $p \parallel q$.

X+3X+24=180 4x=156 $(3x + 24)^{\circ}$

Choose the word(s) that best completes the statement.

- 7. If two lines are cut by a transversal so that alternate interior angles are (congruent, supplementary, complementary), then the lines are parallel.
- 8. If two lines are cut by a transversal so that consecutive interior angles are (congruent, supplementary, complementary), then the lines are parallel.
- 9. If the lines are cut by a transversal so that (alternate interior, alternate exterior, corresponding) angles are congruent, then the lines are parallel.
- 10. Complete the two-column proof.

Given: $\ell \parallel m, \angle 1 \cong \angle 2$

Prove: $a \parallel b$.

- **Statements** Reasons
- 1. $\ell \parallel m$
- **2.** ∠1 ≅ ∠3
- 3. $\angle 1 \cong \angle 2$ **4.** ∠2 ≅ ∠3
- . 5. $a \| b$

11. Write a two-column proof.

Given: $\ell \parallel m, \angle 1 \cong \angle 2$

Prove: $a \parallel b$

Reasons Statements

