_True/False. If the statement is false, rewrite it to make it true.			
1.	Every quadrilateral is a parallelogram		
2.	If quadrilateral ABCD is a parallelogram, then AB = CD.		
3.	If both pairs of opposite angles in a quadrilateral are congruent, then the quadrilateral is a parallelogram.		
4.	If MNOP is a rectangle, then it is a parallelogram.		
5.	You can prove that a quadrilateral is a rectangle by proving that the diagonals are congruent.		
6.	If a quadrilateral is a rhombus or a square, then the diagonals are perpendicular.		
7.	A square has all the properties of a parallelogram, a rectangle, a rhombus, and a trapezoid.		
8.	If a quadrilateral has four right angles, then it must be a rectangle.		
9.	The bases of an isosceles trapezoid are congruent.		
10.	The median of a trapezoid is parallel to the bases of the trapezoid and its measure is half the sum of the measures of the bases.		
11.	A kite has exactly one pair of congruent sides.		
12.	The diagonals of a trapezoid are congruent.		
13.	Opposite angles of a rhombus are never supplementary or congruent.		
14.	In a kite, there is one pair of congruent angles.		
15.	Consecutive angles are never supplementary in a trapezoid.		

Properties of Quadrilaterals

Model Examples

Goal: The goal is to know and apply the properties of quadrilaterals.

Review Topics: Distance, Midpoint, Perimeter and Area, Angles of Polygons

Formulas:	Distance: $d^2 = \Delta x^2 + \Delta y^2$ or $d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$	Midpoint: $M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
n is the number of sides	Sum of Interior Angles: 180(n-2)	Interior angle = $\frac{180(n-2)}{n}$
	Sum of Exterior Angle: 360°	Exterior Angle: $\frac{360}{n}$

Find the possible values for a given the distance between the 2 points:

1.
$$d = \sqrt{34}$$
; (3, 5) and (a, 8)

2.
$$d = \sqrt{72}$$
; (-4,a), (2,4)

Find the sum of the measures of the interior angles of each convex polygon.

3. Heptagon

The measure of an interior angle of a regular polygon is given. Find the number of sides in the polygon.

4. 150°

Find the measure of one interior angle of each regular polygon.

5. 14-gon

Find the measure of one exterior angle of each regular polygon.

6. 24-gon

Find the midpoint of the line segment with the given endpoints. $M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

9. Find y:

10. find the measure of the missing variable(s).

11. find the measure of the missing variable(s).

Find the other endpoint of the line segment with the given endpoint and midpoint.

12.Endpoint: (7, -5), midpoint: (-3, 3)

13.Endpoint: (-4, 5), midpoint: (12, 3)

14. Find the Perimeter and Area of the rectangle

