AP Calculus AB 4-1,4-2, 4-6 Quiz Review #1

Calculators permitted.

1. Find the sum:

$$\sum_{i=2}^{4} [(i+1)^2 - (2-i)^3]$$

- 2. Use Sigma notation to write the sum: $\frac{2}{\sqrt[3]{5-2}} + \frac{4}{\sqrt[3]{5-4}} + \frac{6}{\sqrt[3]{5-6}} + \frac{8}{\sqrt[3]{5-8}}$
- 3. Use 3 middle rectangles to approximate the area of the region bounded by $f(x) = x^2 + 3$, the *x*-axis, x = 1, and x = 6.

4.	Use the table of values on the right to estimate the below:			$\begin{array}{c} x\\ f(x) \end{array}$	0 5	4	6 2	7 3	10 5	
a.	Use 3 left-handed rectangles with intervals indicated by the table to estimate the area between the curve and x-axis on [0, 7]	b.	Use 2 r table to on [0, 1	niddle rect o estimate t 10]	tangle the ar	es wit	h inte	the o	indica curve a	ted by the nd x-axis
с.	Use 3 right-handed rectangles with intervals indicated by the table to estimate area between the curve and x-axis on [4, 10]	d.	Use 3 t estimat	rapezoids e area bet	with ween	interv the c	val in curve	dicate and x	ed by tl -axis o	he table to n [0, 7]

5. Given the region bounded by g (x) = $6 - x^2$, the *x*-axis, x = -1, and x = 2. Use the limit definition to find the exact area of the region.

Find the most general antiderivative of h(x). (Find $\int h(x) dx$)

6. $h(x) = 5x^4 - \pi + \frac{1}{2\sqrt{x}} + \frac{1}{3x^3}$ 7. $h(x) = -2\cos x + 5\sin x - 5cscxcotx$

8. Find the most general expression of f(x) if $f''(x) = 4x^3 - 5x^2 + 3x - 6$.

9. Find the specific expression of f(x) if $f(x) = \int g(x)dx$, $g(x) = 3x^2 - 4x$, and f(-1) = 2

Formula Sheet:

$$\frac{Summation Formulas:}{1) \sum_{i=1}^{n} 1 = n}$$

$$3) \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$4) \sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$5) \sum_{i=1}^{n} C \boldsymbol{a}_{i} = c \sum_{i=1}^{n} \boldsymbol{a}_{i}$$

$$\frac{Area using Limit Definition}{\lim_{n \to \infty} \sum_{i=1}^{n} (width) * f(left endpoint + width * i)}$$

$$width = \frac{b-a}{n}$$

$$\frac{Trapezoid Area:}{Area} = \frac{1}{2}w(h_{1} + h_{2})$$

Integral Formulas:

Power Rule:

$$\int u^n du = \frac{u^{n+1}}{n+1} + C$$

Trig Integrals:

 $\int \sin u \, du = -\cos u + C \qquad \int \cos u \, du = \sin u + C$ $\int \sec^2 u \, du = \tan u + C \qquad \int \sec u \tan u \, du = \sec u + C$ $\int \csc^2 u \, du = -\cot u + C \qquad \int \csc u \cot u \, du = -\csc u + C$