## AP Calculus AB 4-1,4-2, 4-6 Quiz Review \#1

Calculators permitted.

1. Find the sum:
$\sum_{i=2}^{4}\left[(i+1)^{2}-(2-i)^{3}\right]$
2. Use Sigma notation to write the sum: $\frac{2}{\sqrt[3]{5-2}}+\frac{4}{\sqrt[3]{5-4}}+\frac{6}{\sqrt[3]{5-6}}+\frac{8}{\sqrt[3]{5-8}}$
3. Use 3 middle rectangles to approximate the area of the region bounded by $f(x)=x^{2}+3$, the $x$-axis, $x=1$, and $x=6$.
4. Use the table of values on the right to estimate the below:

| $x$ | 0 | 4 | 6 | 7 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 5 | 3 | 2 | 3 | 5 |

a. Use 3 left-handed rectangles with intervals indicated by the table to estimate the area between the curve and x -axis on [0, 7]
b. Use 2 middle rectangles with intervals indicated by the table to estimate the area between the curve and x -axis on $[0,10]$
c. Use 3 right-handed rectangles with intervals indicated by the table to estimate area between the curve and x -axis on $[4,10]$
d. Use 3 trapezoids with interval indicated by the table to estimate area between the curve and x -axis on $[0,7]$
5. Given the region bounded by $\mathrm{g}(\mathrm{x})=6-\mathrm{x}^{2}$, the $x$-axis, $x=-1$, and $x=2$. Use the limit definition to find the exact area of the region.

Find the most general antiderivative of $h(x)$. (Find $\int h(x) d x$ )
6. $h(x)=5 x^{4}-\pi+\frac{1}{2 \sqrt{x}}+\frac{1}{3 x^{3}}$
7. $\mathrm{h}(\mathrm{x})=-2 \cos \mathrm{x}+5 \sin \mathrm{x}-5 \csc x \cot x$
8. Find the most general expression of $f(x)$ if $f^{\prime \prime}(x)=4 x^{3}-5 \mathrm{x}^{2}+3 \mathrm{x}-6$.
9. Find the specific expression of $f(x)$ if $f(x)=\int g(x) d x, g(x)=3 x^{2}-4 x$, and $f(-1)=2$

## Formula Sheet:

Summation Formulas:

1) $\sum_{i=1}^{n} 1=n$
2) $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
3) $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
4) $\sum_{i=1}^{n} c \boldsymbol{a}_{\boldsymbol{i}}=c \sum_{i=1}^{n} \boldsymbol{a}_{\boldsymbol{i}}$
$\frac{\text { Area using Limit Definition }}{\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\text { width }) * f(\text { left endpoint }+ \text { width } * i)}$

$$
\text { width }=\frac{b-a}{n}
$$

Trapezoid Area:

$$
\text { Area }=\frac{1}{2} w\left(h_{1}+h_{2}\right)
$$

Integral Formulas:
Power Rule:
$\int u^{n} d u=\frac{u^{n+1}}{n+1}+C$

Trig Integrals:

$$
\int \sin u d u=-\cos u+C \quad \int \cos u d u=\sin u+C
$$

$$
\int \sec ^{2} u d u=\tan u+C \quad \int \sec u \tan u d u=\sec u+C
$$

$$
\int \csc ^{2} u d u=-\cot u+C \quad \int \csc u \cot u d u=-\csc u+C
$$

