Let f and g be the functions defined by $f(x) = 1 + x + e^{x^2 - 2x}$ and $g(x) = x^4 - 6.5x^2 + 6x + 2$. Let R and S be the two regions enclosed by the graphs of f and g shown in the figure above.

- (b) Region S is the base of a solid whose cross sections perpendicular to the x-axis are squares. Find the volume of the solid.
- (c) Let h be the vertical distance between the graphs of f and g in region S. Find the rate at which h changes with respect to x when x = 1.8.

(a) The graphs of y = f(x) and y = g(x) intersect in the first quadrant at the points (0, 2), (2, 4), and (A, B) = (1.032832, 2.401108).

Area =
$$\int_0^A [g(x) - f(x)] dx + \int_A^2 [f(x) - g(x)] dx$$

= 0.997427 + 1.006919 = 2.004

(b) Volume =
$$\int_{A}^{2} [f(x) - g(x)]^{2} dx = 1.283$$

(c)
$$h(x) = f(x) - g(x)$$

 $h'(x) = f'(x) - g'(x)$
 $h'(1.8) = f'(1.8) - g'(1.8) = -3.812$ (or -3.811)

$$4: \begin{cases} 1 : \text{ limits} \\ 2 : \text{ integrands} \\ 1 : \text{ answer} \end{cases}$$

$$3: \begin{cases} 2: \text{ integrand} \\ 1: \text{ answer} \end{cases}$$

$$2: \begin{cases} 1 : \text{considers } h \\ 1 : \text{answer} \end{cases}$$

Let R be the region enclosed by the graph of $f(x) = x^4 - 2.3x^3 + 4$ and the horizontal line y = 4, as shown in the figure above.

- (b) Region *R* is the base of a solid. For this solid, each cross section perpendicular to the *x*-axis is an isosceles right triangle with a leg in *R*. Find the volume of the solid.
- (c) The vertical line x = k divides R into two regions with equal areas. Write, but do not solve, an equation involving integral expressions whose solution gives the value k.

(a)
$$f(x) = 4 \implies x = 0, 2.3$$

Volume =
$$\pi \int_0^{2.3} \left[(4+2)^2 - (f(x)+2)^2 \right] dx$$

= 98.868 (or 98.867)

(b) Volume =
$$\int_0^{2.3} \frac{1}{2} (4 - f(x))^2 dx$$

= 3.574 (or 3.573)

$$3: \begin{cases} 2: \text{integrand} \\ 1: \text{answer} \end{cases}$$

(c)
$$\int_0^k (4 - f(x)) dx = \int_k^{2.3} (4 - f(x)) dx$$

$$2: \begin{cases} 1 : \text{area of one region} \\ 1 : \text{equation} \end{cases}$$

Let R be the region in the first quadrant bounded by the x-axis and the graphs of $y = \ln x$ and y = 5 - x, as shown in the figure above.

(b) Region R is the base of a solid. For the solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid.

(c) The horizontal line y = k divides R into two regions of equal area. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of k.

$$\ln x = 5 - x \implies x = 3.69344$$

Therefore, the graphs of $y = \ln x$ and y = 5 - x intersect in the first quadrant at the point (A, B) = (3.69344, 1.30656).

(a) Area =
$$\int_0^B (5 - y - e^y) dy$$

= 2.986 (or 2.985)

 $3: \begin{cases} 1 : integrand \\ 1 : limits \end{cases}$

OR

Area =
$$\int_{1}^{A} \ln x \, dx + \int_{A}^{5} (5 - x) \, dx$$

= 2.986 (or 2.985)

(b) Volume =
$$\int_{1}^{A} (\ln x)^{2} dx + \int_{A}^{5} (5 - x)^{2} dx$$

$$3: \begin{cases} 2: integrands \\ 1: expression for total volume \end{cases}$$

(c)
$$\int_0^k (5 - y - e^y) dy = \frac{1}{2} \cdot 2.986$$
 (or $\frac{1}{2} \cdot 2.985$)

$$3: \begin{cases} 1 : integrand \\ 1 : limits \\ 1 : equation \end{cases}$$

4)

Let R be the region in the first quadrant bounded by the graph of $y = 2\sqrt{x}$, the horizontal line y = 6, and the y-axis, as shown in the figure above.

- (a) Find the area of R.
- (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 7.
- (c) Region R is the base of a solid. For each y, where $0 \le y \le 6$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length of its base in region R. Write, but do not evaluate, an integral expression that gives the volume of the solid.

(a) Area =
$$\int_0^9 (6 - 2\sqrt{x}) dx = \left(6x - \frac{4}{3}x^{3/2}\right)\Big|_{x=0}^{x=9} = 18$$

$$3: \begin{cases} 1 : integrand \\ 1 : antiderivative \\ 1 : answer \end{cases}$$

(b) Volume =
$$\pi \int_0^9 ((7 - 2\sqrt{x})^2 - (7 - 6)^2) dx$$

$$3: \begin{cases} 2: integrand \\ 1: limits and constant \end{cases}$$

(c) Solving
$$y = 2\sqrt{x}$$
 for x yields $x = \frac{y^2}{4}$.
Each rectangular cross section has area $\left(3\frac{y^2}{4}\right)\left(\frac{y^2}{4}\right) = \frac{3}{16}y^4$.
Volume $= \int_0^6 \frac{3}{16}y^4 dy$

$$3: \begin{cases} 2: integrand \\ 1: answer \end{cases}$$