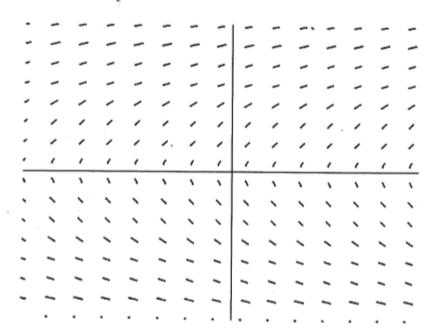
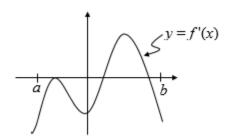

(Show work on test. Make corrections in different color ink (or use highlighter)

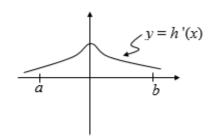
- 1) Find the value of $\lim_{x\to 2^-} \frac{2x}{x-2}$ (A) −∞
 - (B) $\frac{1}{2}$
 - (C) 1
 - (D) 2
 - (E) ∞
- Evaluate $\lim_{x \to -1} \frac{x^2 5x 6}{x^2 1}$ 2)
 - (A) 1
 - (B) 3

 - (D) 12
 - (E) indeterminate
- 3)
 - (A) $-\frac{1}{2}$


 - (C) $\frac{1}{4}$
 - (D) $\frac{1}{2}$
 - (E) does not exist
- 4)
- $f(x) = 2x^3 6x^2 + 6x 1$ has a point of inflection located at
- (A) (0, -1)
- (B) (1, 1)
- (C) (2, 3)
- (D) (1, 0)
- (E) (-1, 1)

5) Find the average value of f(x) on the interval [-1, 4] in the figure shown.


- (A) $-\frac{1}{5}$
- (B) $\frac{7}{10}$
- (C) $\frac{9}{10}$
- (D) $\frac{7}{2}$
- (E) $\frac{35}{2}$


Which equation has the slope field shown below?

- (A) $\frac{dy}{dx} = \frac{5}{y}$ (B) $\frac{dy}{dx} = \frac{5}{x}$ (C) $\frac{dy}{dx} = \frac{x}{y}$
- **(D)** $\frac{dy}{dx} = 5y$ **(E)** $\frac{dy}{dx} = x + y$

- An object moving in a straight line has velocity given by the equation $v(t) = 4t + e^{t-2}$. At time t = 2 the object's position, y(t), is given by y(2) = 3. The function, y(t), describing the object's position for any time t > 0 is
 - (A) y(t) = 9t 15
 - (B) $y(t) = 2t^2 + e^{t-2} + 9$
 - (C) y(t) = 9t + 9
 - (D) $y(t) = 2t^2 + e^{t-2} 6$
 - (E) y(t) = 9t 6
- Consider a continuous function *f* with the properties that *f* is concave up on the interval [-1, 3] and concave down on the interval [3, 5]. Which of the following statements is true?
 - (A) f''(2) > 0 and f''(4) < 0.
 - (B) f''(2) < 0 and f''(4) > 0.
 - (C) f''(3) > 0 and x = 3 is a point of inflection of f.
 - (D) Both (A) and (C)
 - (E) Both (B) and (C)
- A spherical balloon is being filled with water so that its volume increases at a rate of $100 \text{ cm}^3/\text{s}$. How fast is the radius of the balloon increasing when the diameter is 50 cm? The volume of a sphere of radius r is $\frac{4}{3}\pi r^3$.
 - (A) $\frac{1}{100\pi}$ cm/s
 - (B) $\frac{1}{25\pi}$ cm/s
 - (C) $\frac{1}{50\pi}$ cm/s
 - (D) $\frac{1}{75\pi}$ cm/s
 - (E) There is not enough information to determine the answer.

The graphs of the derivatives of functions f, g, and h are shown above. Which of the functions f, g, or h have a relative maximum on the open interval a < x < b?

- a) f only
- b) g only
- c) h only
- d) f and g only
- e) f, g, and h

11)

Find the derivative of $f(x) = \frac{3x^2}{x-7}$ a) $\frac{42x-3x^2}{(x-7)^2}$ b) $\frac{9x^2-42x}{(x-7)^2}$ c) 6x d) $\frac{3x(x-14)}{(x-7)^2}$ e) none of these

12)

Find $\frac{dy}{dx}$ for the following: $y^2 - 3xy + 7x = 2$

- a) $\frac{dy}{dx} = \frac{3y-5}{2y-3x}$ b) $\frac{dy}{dx} = \frac{3y-7}{2y-3}$ c) $\frac{dy}{dx} = \frac{3y-5}{2y-3}$ d) $\frac{dy}{dx} = \frac{3y-7}{2y-3x}$
- e) none of these

13) An equation of the line tangent to
$$y = x^3 + 3x^2 + 2$$
 at its point of inflection is

a)
$$y = -6x - 6$$

b)
$$y = -3x + 1$$

c)
$$y = 2x + 10$$

d)
$$y = 3x - 1$$

b)
$$y = -3x + 1$$
 c) $y = 2x + 10$ d) $y = 3x - 1$ e) $y = 4x + 1$

14) If
$$y = \cos^2 x - \sin^2 x$$
, then $y' =$

$$(A) -1$$

(C)
$$-2(\cos x + \sin x)$$

(D)
$$2(\cos x + \sin x)$$

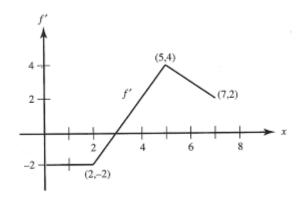
(E)
$$-4(\cos x)(\sin x)$$

$$\int \frac{x-2}{x-1} \, dx =$$

(A)
$$-\ln|x-1|+C$$

(B)
$$x + \ln|x - 1| + C$$

(C)
$$x - \ln|x - 1| + C$$


(D)
$$x + \sqrt{x-1} + C$$

(E)
$$x - \sqrt{x-1} + C$$

If
$$\int_{2}^{4} f(x) dx = 6$$
, then $\int_{2}^{4} (f(x) + 3) dx =$

- (A) 3
- (B) 6
- (C) 9
- (D) 12
- (E) 15

The graph of f' is shown below. If f(7) = 3 then f(1) =

- (A) -10
- **(B)** −4
- (C) -3
- **(D)** 10
- **(E)** 16

18)

Using the substitution $u = x^2 - 3$, $\int_{-1}^4 x(x^2 - 3)^5 dx$ is equal to which of the following?

- (A) $2\int_{-2}^{13} u^5 du$
- (B) $\int_{-2}^{13} u^5 du$
- (C) $\frac{1}{2} \int_{-2}^{13} u^5 \ du$
- (D) $\int_{-1}^4 u^5 \ du$
- (E) $\frac{1}{2} \int_{-1}^{4} u^5 \ du$

x	2	3	5	8	13
f(x)	6	-2	-1	3	9

The function f is continuous on the closed interval [2, 13] and has values as shown in the table above. Using the intervals [2, 3], [3, 5], [5, 8], and [8, 13], what is the approximation of $\int_2^{13} f(x) dx$ obtained from a left Riemann sum?

- (A) 6
- (B) 14
- (C) 28
- (D) 32
- (E) 50

20)

The graph of $y = 3x^4 - 16x^3 + 24x^2 + 48$ is concave down for

- (A) x < 0
- (B) x > 0
- (C) x < -2 or $x > -\frac{2}{3}$
- (D) $x < \frac{2}{3} \text{ or } x > 2$
- (E) $\frac{2}{3} < x < 2$

21)

t (sec)	0	2	4	6
a(t) (ft/sec ²)	5	2	8	3

The data for the acceleration a(t) of a car from 0 to 6 seconds are given in the table above. If the velocity at t=0 is 11 feet per second, the approximate value of the velocity at t=6, computed using a left-hand Riemann sum with three subintervals of equal length, is

- (A) 26 ft/sec
- (B) 30 ft/sec
- (C) 37 ft/sec
- (D) 39 ft/sec
- (E) 41 ft/sec

$$f(x) = \begin{cases} cx + d & \text{for } x \le 2\\ x^2 - cx & \text{for } x > 2 \end{cases}$$

Let f be the function defined above, where c and d are constants. If f is differentiable at x = 2, what is the value of c + d?

- (A) -4
- (B) -2
- (C) 0
- (D) 2
- (E) 4

23)

$$f(x) = \begin{cases} x+2 & \text{if } x \le 3\\ 4x-7 & \text{if } x > 3 \end{cases}$$

Let f be the function given above. Which of the following statements are true about f?

- I. $\lim_{x \to 3} f(x)$ exists.
- II. f is continuous at x = 3.
- III. f is differentiable at x = 3.
- (A) None
- (B) I only
- (C) II only
- (D) I and II only
- (E) I, II, and III

24)

Which of the following is the solution to the differential equation $\frac{dy}{dx} = \frac{x^2}{y}$ with the initial condition y(3) = -2?

(A)
$$y = 2e^{-9+x^3/3}$$

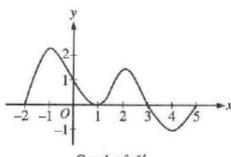
(B)
$$y = -2e^{-9+x^3/3}$$

(C)
$$y = \sqrt{\frac{2x^3}{3}}$$

(D)
$$y = \sqrt{\frac{2x^3}{3} - 14}$$

(E)
$$y = -\sqrt{\frac{2x^3}{3} - 14}$$

$$\frac{d}{dx}\left(\int_0^{x^2}\sin(t^3)\,dt\right) =$$


(A) $-\cos(x^6)$ (B) $\sin(x^3)$ (C) $\sin(x^6)$ (D) $2x\sin(x^3)$ (E) $2x\sin(x^6)$

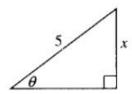
26)

If
$$y = (x^3 + 1)^2$$
, then $\frac{dy}{dx} =$

(A) $(3x^2)^2$ (B) $2(x^3+1)$ (C) $2(3x^2+1)$ (D) $3x^2(x^3+1)$ (E) $6x^2(x^3+1)$

27)

Graph of f'


The graph of f', the derivative of f, is shown above for $-2 \le x \le 5$. On what intervals is f increasing?

- (A) [-2,1] only
- (B) [-2, 3]
- (C) [3, 5] only
- (D) [0, 1.5] and [3, 5]
- (E) [-2, -1], [1, 2], and [4, 5]

If $\frac{dy}{dx} = (1 + \ln x) y$ and if y = 1 when x = 1, then y = 1

- (B) $1 + \ln x$
- (C) ln x
- (D) $e^{2x+x \ln x 2}$
- $e^{x \ln x}$ (E)

29)

In the triangle shown above, if θ increases at a constant rate of 3 radians per minute, at what rate is x increasing in units per minute when x equals 3 units?

- (A) 3
- (B) $\frac{15}{4}$ (C) 4 (D) 9
- (E) 12

30)

$$\int_1^e \frac{x^2+1}{x} \, dx =$$

- (A) $\frac{e^2-1}{2}$ (B) $\frac{e^2+1}{2}$ (C) $\frac{e^2+2}{2}$ (D) $\frac{e^2-1}{e^2}$ (E) $\frac{2e^2-8e+6}{3e}$

(Show work on test. Make corrections in different color ink (or use highlighter)

Calculator section

1)

Let f be the function given by $f(x) = 3e^{2x}$ and let g be the function given by $g(x) = 6x^3$. At what value of x do the graphs of f and g have parallel tangent lines?

- (A) -0.701
- (B) -0.567
- (C) -0.391
- (D) -0.302
- (E) -0.258

2)

The base of a solid is the region in the first quadrant enclosed by the graph of $y = 2 - x^2$ and the coordinate axes. If every cross section of the solid perpendicular to the y-axis is a square, the volume of the solid is given by

(A)
$$\pi \int_{0}^{2} (2-y)^{2} dy$$

(B)
$$\int_{0}^{2} (2-y) dy$$

(C)
$$\pi \int_{0}^{\sqrt{2}} (2-x^2)^2 dx$$

(D)
$$\int_0^{\sqrt{2}} (2-x^2)^2 dx$$

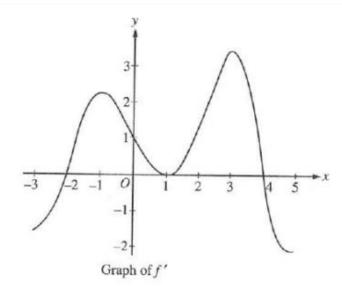
(E)
$$\int_{0}^{\sqrt{2}} (2-x^2) dx$$

Let g be the function given by $g(x) = \int_0^x \sin(t^2) dt$ for $-1 \le x \le 3$. On which of the following intervals is g decreasing?

- $(A) -1 \le x \le 0$
- (B) $0 \le x \le 1.772$
- (C) $1.253 \le x \le 2.171$
- (D) $1.772 \le x \le 2.507$
- (E) $2.802 \le x \le 3$

4)

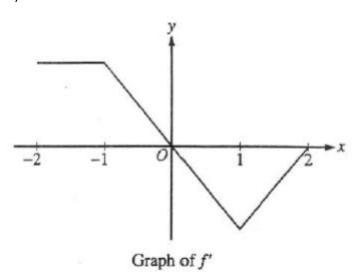
The first derivative of the function f is defined by $f'(x) = \sin(x^3 - x)$ for $0 \le x \le 2$. On what intervals is f increasing?


- (A) $1 \le x \le 1.445$ only
- (B) $1 \le x \le 1.691$
- (C) $1.445 \le x \le 1.875$
- (D) $0.577 \le x \le 1.445$ and $1.875 \le x \le 2$
- (E) $0 \le x \le 1$ and $1.691 \le x \le 2$

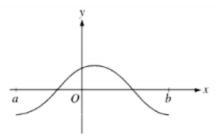
5)

x	0	1	2	3
f''(x)	5	0	-7	4

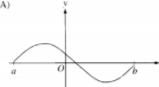
The polynomial function f has selected values of its second derivative f'' given in the table above. Which of the following statements must be true?


- (A) f is increasing on the interval (0, 2).
- (B) f is decreasing on the interval (0, 2).
- (C) f has a local maximum at x = 1.
- (D) The graph of f has a point of inflection at x = 1.
- (E) The graph of f changes concavity in the interval (0, 2).

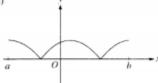
The graph of the derivative of a function f is shown in the figure above. The graph has horizontal tangent lines at x = -1, x = 1, and x = 3. At which of the following values of x does f have a relative maximum?

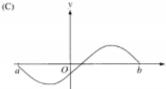

- (A) -2 only (B) 1 only
- (C) 4 only
- (D) -1 and 3 only
- (E) -2, 1, and 4

7)

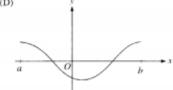

The graph of f', the derivative of the function f, is shown above. Which of the following statements is tru about f?

- (A) f is decreasing for $-1 \le x \le 1$.
- (B) f is increasing for $-2 \le x \le 0$.
- (C) f is increasing for $1 \le x \le 2$.
- (D) f has a local minimum at x = 0.
- (E) f is not differentiable at x = -1 and x = 1.

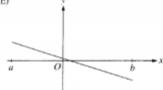



The graph of f is shown in the figure above. Which of the following could be the graph of the derivative of f?

(A)



(B)



(D)

(E)

9)

Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(3)?

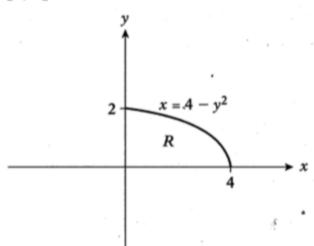
- (A) $-\frac{1}{2}$
- (C)
- (D)
- (E) The value of g'(3) cannot be determined from the information given.

The region enclosed by the graphs of $y = x^{2/3}$, y = 4, and the y-axis is rotated about the line y = 4. The volume of the solid generated can be represented by the integral

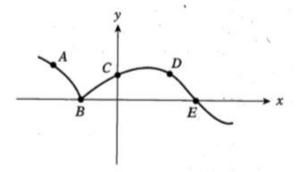
(A)
$$2\pi \int_0^8 (4-x^{2/3})^2 dx$$

(B)
$$\pi \int_0^8 (4-x^{2/3})^2 dx$$

(C)
$$2\pi \int_0^4 (4-x^{2/3})^2 dx$$


(D)
$$\pi \int_0^4 (16 - x^{4/3}) dx$$

(E)
$$\pi \int_0^8 (16 - x^{4/3}) dx$$


11)

A solid is formed that has the region R as its base and cross sections perpendicular to the x-axis that are squares. Find the value of k so that the volume of the solid on the interval [0, k] is half the total volume of the solid.

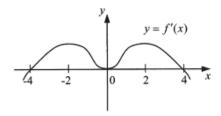
- (A) 0.568
- (B) 1.172
- (C) 2.201
- (D) 3.2
- (E) 3.567

In the graph shown, at which point is $\frac{dy}{dx} > 0$ and $\frac{d^2y}{dx^2} < 0$?

- (A) A
- (B) B
- (C) C
- (D) D
- (E) E

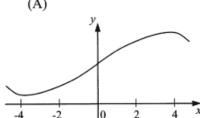
13)

If $f'(x) = \sqrt{1+x^3}$ and f(1) = 0.5, then f(4) =

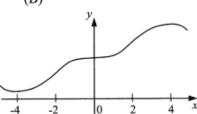

- (A) 7.562
- (B) 8.062
- (C) 12.871
- (D) 13.371
- (E) 17.871

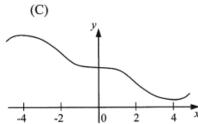
14)

If the region enclosed by the y-axis and the graph of $x = 4 - y^2$ is revolved about the y-axis, the volume of the solid generated is

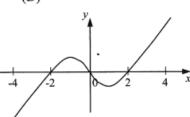

- (A) 25.133

- (B) 33.510 (C) 53.617 (D) 107.233 (E) 214.466

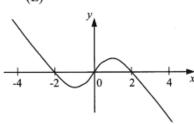



The graph of the derivative of f is shown in the figure above. Which of the following could be the graph of f?

(A)



(B)



(D)

(E)

16)

At how many points on the interval $[0,\pi]$ does $f(x) = 2 \sin x + \sin 4x$ satisfy the Mean Value Theorem?

- (A) none
- **(B)** 1
- **(C)** 2
- **(D)** 3
- **(E)** 4