Proofs Involving Congruent Triangles First, let's analyze some proofs. This is easy! All you have to do is explain in plain English what is going on in the proofs- We'll look at some examples first. AE. 1. Given: $\overline{AB} \cong \overline{DE}$, $\overline{AC} \cong \overline{DF}$, and $\angle A \cong \angle D$ Prove: △ABC≅△DEF | Statements | Reasons | |--------------|----------| | 1. ĀB≅DĒ | 1. Given | | 2. AC≅DF | 2. Given | | 3.∠A≅∠D | 3. Given | | 4. △ABC≅△DEF | 4. SAS | #### AE.2. Prove: △ABD≅△BCD | Statements | <u> Reasons</u> | |--------------|-----------------------| | 1. AB≅CD | 1. Given | | 2. AD≅CB | 2. Given | | 3. BD≅BD | 3. Reflexive property | | 4. △ABD≅△CDB | 4. SSS | AE. 3. Given: AE Bisects \overline{BD} , $\angle B \cong \angle D$ Prove: △ABC≅△DBC | Statements | Reasons | |--|-------------------------| | 1.∠B≅∠D | 1. Given | | 2. \overline{AC} Bisects \overline{BD} | 2. Given | | 3. BC≅DC | 3. Definition of Bisect | | 4. ∠ACB≅∠DCE | 4. Vertical angles | | 5. ∆ABC≅∆DBC | 5. ASA | #### Analysis: Working backward we must ask the key question, "How can we show that two triangles are congruent?" The answer? A triangle congruence theorem like SSS, SAS, ASA, AAS or HL. This gives us B1: \triangle ABC \cong \triangle DEF, by some property, but which one? To find out, start working forward. Listing all-of-the given information gives us a pair of angles \angle A and \angle D sandwiched between a pair of congruent sides $\overline{AB}\cong\overline{DE}$ and $\overline{AC}\cong\overline{DF}$. So this means we have \triangle ABC \cong \triangle DEF by the SAS—theorem which is B2: and the proof is complete. #### Analysis: Working backward, we must ask the key question "How-can we show that two-triangles are congruent?" The answer? A triangle congruence-theorem like SSS, SAS, ASA, AAS or HL. This gives us B1: \triangle ABC \cong \triangle BCD bys ome property, but which one? Then start working forward. Listing all of the given information gives us two pairs of sides $\overrightarrow{AB}\cong \overrightarrow{CD}$ and $\overrightarrow{AD}\cong \overrightarrow{CB}$, but this is not enough. We need another pair of sides or an angle between them. Looking now at the diagram we have $\overrightarrow{BD}\cong \overrightarrow{BD}$ as a shared line. So this brings us to say— \triangle ABC \cong \triangle BCD by SSS which is B1 and the proof is complete. #### Analysis: Working backward we must ask the key question, "How can we show that two triangles are congruent?" The answer? A triangle congruence theorem like SSS, SAS, ASA, AAS or HL. This gives us B1: \triangle ABC \cong \triangle BCD by some property, but which one? Then start working forward. Listing all of the given information gives us a pair of angles \angle B and \angle D, and \overrightarrow{BD} and \overrightarrow{AE} bisects \overrightarrow{BD} . If AE bisects \overrightarrow{BD} then \overrightarrow{BD} is cut in half at C so $\overrightarrow{BC}\cong\overrightarrow{DC}$! This is not enough though. Looking at the diagram we see vertical angles \angle ACB \cong \angle DCE, which gives us \triangle ABC \cong \triangle BCD by the property ASA. This is B1 and the proof is complete. Your turn! Write an analysis of each proof involving congruent triangles. 1. Analysis: Given: $\overline{BC} \cong \overline{EF}$, $\angle B \cong \angle E$, and $\angle C \cong \angle F$ Prove: △ABC≅△DEF | Statements | Reasons | |--------------|----------| | 1. BC≅EF | 1. Given | | 2.∠B≅∠E | 2. Given | | 3.∠C≅∠F | 3. Given | | 4. △ABC≅△DEF | 4. ASA | 2. Given: AB≅BD Analysis: Prove: △ABD≅△BCD | Statements | t Reasons | |--------------|-----------------------| | 1. AB≅BD | 1. Given | | 2. BC≅BC | 2. Reflexive property | | 3. ∆ABC≅∆DBC | 3. HL | 3. Analysis: Given $\overline{AB} \parallel \overline{ED}$, $\overline{AC} \cong \overline{EC}$ Prove: △ABC≅△EDG | Statements | Reasons | |--------------|------------------------------| | 1. AB ED | 1. Given | | 2. AC≅EC | -2. Given | | 3.∠A≅∠E | 3. Alternate Interior angles | | 4.∠ACB≅∠DCE | 4. Vertical angles | | 5. ∆ABC≅∆DBC | 5. ASA | For these fill in any missing statements or reasons. ### 1. Given: $\overline{AB} \cong \overline{DE}$, $\angle B \cong \angle E$, and $\angle A \cong \angle D$ Prove: △ABC≅△DBC | Statements | Reasons | |----------------------------------|----------| | 1. AB ≅ DE | 1. Given | | 2. | 2.Given | | 3.∠A≅∠D | 3. | | 4. △ABC≅△DEF | 4. | ## 2. Given: $\overline{PQ} \cong \overline{RS}$, and $\angle PQS \cong \angle RSQ$ Prove: △ABC≅△DBC | Statements | Reasons | |--------------|----------| | 1. | 1. Given | | 2. | 2. Given | | 3. QS≅QS | 3. | | 4. ∆PQS≅∆RSQ | 4. | 3. Given: $\overline{AB} \cong \overline{DE}$, $\overline{AC} \cong \overline{DF}$, and $\overline{BC} \cong \overline{EF}$ Prove: △ABD≅△DEF | Statements | Reasons | | |--------------------------------------|---------|--| | 1. \overline{AB} ≅ \overline{DE} | 1. | | | 2. | 2. | | | 3. | 3. | | | 4. | 4. SSS | | | | | | ### 4. Given: ∠L≅∠N, ∠LOM≅∠NMO Prove: △LMO≅△NOM | Statements | Reasons | |--------------|-----------------------| | 1. | 1. | | 2, | 2. Given | | 3. | 3. Reflexive Property | | 4. ∆LMO≅∆NOM | 4. | | | i |