Unit 1 Limits Review

Algebraic Steps (for x approaching Real Number): 1) Plug in x-value first (IGNORE one-sided limit) 2) If result is a real number value, the value is the limit. 3) If the result is $\frac{0}{0}$ (indeterminate form) then reduce by i) factoring ii) conjugate method iii) simplify complex fraction 4) Re-evaluate the reduced Expression 4) If result is undefined, and it's a one-sided limit, then test using decimals.

Evaluate Limits (for x approaching $\pm \infty$): 1) Compare Degrees: i) if Numerator < Denominator, Limit = 0 ii) If Numerator = Denominator, Limit = ratio of coefficients iii) If Number > Denominator, Limit = DNE $\pm \infty$

<u>L'Hopital's Rule Option</u>: If Evaluating Limits produces $\frac{0}{0}$ then $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$

- take derivative of numerator and denominator separately,
- then re-evaluate Limit.

1.
$$\lim_{x\to 2} \frac{x^2-4}{x^2+4}$$
 is

- (A)
- (\mathbb{B})
- (C) $-\frac{1}{2}$
- (D) -
- **(E)**

2.
$$\lim_{x\to\infty} \frac{4-x^2}{x^2-1}$$
 is

- (A) 1
- **(B)**
- **C**) -4
- (**D**) –
- (E)

3.
$$\lim_{x\to 3^-} \frac{x-3}{x^2-2x-3}$$
 is

- (A) 0
- **(B)**
- (C) -
- (**D**) ∞
- (E) none of these

4.
$$\lim_{x \to -3^+} \frac{2x+1}{x+3}$$
 is

- A) 0
- B) 2
- C) -5
- D) ∞
- E) −∞

5)
$$\lim_{x \to \infty} \frac{4 - x^2}{4x^2 - x - 2}$$
 is

- (A) -2 (B) $-\frac{1}{4}$
- **(C)** 1
- **(D)** 2
- **(E)**

6)
$$\lim_{x \to \infty} \frac{5x^3 + 27}{20x^2 + 10x + 9}$$
 is

- (A) -∞ (B) -1
- (C)
- (D)
- **(E)**

7)
$$\lim_{x\to 0} \frac{\sin 5x}{x}$$

- (A) = 0 (B) = $\frac{1}{5}$ (C) = 1 (D) = 5 (E) does not exist

$$\lim_{x \to 0} \frac{\sin 2x}{3x}$$

- (A) = 0 (B) = $\frac{2}{3}$ (C) = 1 (D) = $\frac{3}{2}$ (E) does not exist

10) The graph of
$$y = \frac{x^2 - 9}{3x - 9}$$
 has

- (A) a vertical asymptote at x = 3 (B) a horizontal asymptote at $y = \frac{1}{3}$
- (C) a removable discontinuity at x = 3 (D) an infinite discontinuity at x = 3

(E) none of these

11)
$$\lim_{x \to \infty} \frac{2x^2 + 1}{(2 - x)(2 + x)}$$
 is

- (A) -4 (B)
- -2
- (C)
- (D)
- nonexistent (E)

Which statement is true about the curve
$$y = \frac{2x^2 + 4}{2 + 7x - 4x^2}$$
?

- The line $x = -\frac{1}{4}$ is a vertical asymptote.
- The line x = 1 is a vertical asymptote.
- The line $y = -\frac{1}{4}$ is a horizontal asymptote. (C)
- (D) The graph has no vertical or horizontal asymptote.
- (E) The line y = 2 is a horizontal asymptote.

Continuity Conditions Review:

- 1. f(c) is defined (point exists on the graph)
- 2. The $\lim_{x \to c} f(x)$ exists $\left[\lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x) \right]$
- $3. f(c) = \lim_{x \to c} f(x)$
- If function passes all 3 conditions, the function has continuity at x = c
- If condition #2 FAILS, the function has **nonremovable** discontinuity at x = c
- If function PASSES condition #2 and FAILS condition #3, the function has removable discontinuity at x = c

13) Let
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x \neq 1 \\ 4 & \text{if } x = 1. \end{cases}$$

Which of the following statements is (are) true?

- I. $\lim_{x \to 1} f(x)$ exists
- II. f(1) exists
- III. f is continuous at x = 1
- (A) I only (B) II only (C) I and II **(D)** none of them (E) all of them

If
$$\begin{cases} f(x) = \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2}, \text{ for } x \neq 2, \\ f(2) = k \end{cases}$$
 and if f is

continuous at x = 2, then k =

- A) 0
- B) $\frac{1}{6}$ C) $\frac{1}{3}$ D) 1 E) $\frac{7}{5}$

Let
$$f(x) = \begin{cases} \frac{x^2 + x}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$$
.

Which of the following statements is (are) true?

- I. f(0) exists
- II. $\lim_{x \to a} f(x)$ exists
- III. f is continuous at x = 0
- (A) I only (B) II only (C) I and II only
- (D) all of them
- (E) none of them

16)

Suppose
$$\begin{cases} f(x) = \frac{3x(x-1)}{x^2 - 3x + 2} \text{ for } x \neq 1, 2\\ f(1) = -3, \\ f(2) = 4. \end{cases}$$

Then f(x) is continuous

- (A) except at x = 1 (B) except at x = 2 (C) except at x = 1 or 2
- **(D)** except at x = 0, 1, or 2 **(E)** at each real number

Questions 32-36 are based on the function f shown in the graph and defined below:

32. $\lim f(x)$

- (A) equals 0 (B) equals 1 (C) equals 2

- (D) does not exist (E) none of these

33. The function f is defined on [-1,3]

- (A) if $x \neq 0$
- **(B)** if $x \neq 1$
 - (C) if $x \neq 2$

- **(D)** if $x \ne 3$ **(E)** at each x in [-1,3]

34. The function f has a removable discontinuity at

- (A) x = 0 (B) x = 1 (C) x = 2 (D) x = 3

- (E) none of these

35. On which of the following intervals is f continuous?

- (A) $-1 \le x \le 0$
- **(B)** 0 < x < 1
- (C) $1 \le x \le 2$

- **(D)** $2 \le x \le 3$ **(E)** none of these

36. The function f has a jump discontinuity at

- (A) x = -1 (B) x = 1 (C) x = 2

- **(D)** x = 3 **(E)** none of these