AP Calc Review: Unit 3 Differentiation Application MC WS

- 1. The slope of the curve $y^3 xy^2 = 4$ at the point where y = 2 is
- (A) -2 (B) $\frac{1}{4}$ (C) $-\frac{1}{2}$ (D) $\frac{1}{2}$
- 2. The tangent to the curve $y^2 - xy + 9 = 0$ is vertical when
- **(A)** y = 0 **(B)** $y = \pm \sqrt{3}$ **(C)** $y = \frac{1}{2}$
- **(D)** $y = \pm 3$ **(E)** none of these
- 3. The function $f(x) = x^4 - 4x^2$ has
 - (A) one relative minimum and two relative maxima
 - one relative minimum and one relative maximum (B)
 - two relative maxima and no relative minimum (C)
 - two relative minima and no relative maximum (D)
 - two relative minima and one relative maximum **(E)**
- 4. The number of inflection points of the curve in Question 12 is
 - (A) 0
- (B) 1
- (\mathbb{C})
- (\mathbb{D})
- (E)
- 5. The maximum value of the function $y = -4\sqrt{2-x}$ is

 - (A) 0 (B) -4
 - (C) 2
- (D) -2 (E) none of these

- A balloon is being filled with helium at the rate of 4 ft³/min. The rate, in square feet per 6. minute, at which the surface area is increasing when the volume is $\frac{32\pi}{3}$ ft³ is
- **(B)** 2
- (C) 4
- (D) 1
- (E) 2π

- **7.** A circular conical reservoir, vertex down, has depth 20 ft and radius of the top 10 ft. Water is leaking out so that the surface is falling at the rate of $\frac{1}{2}$ ft/hr. The rate, in cubic feet per hour, at which the water is leaving the reservoir when the water is 8 ft deep is

- (A) 4π (B) 8π (C) 16π (D) $\frac{1}{4\pi}$ (E) $\frac{1}{8\pi}$

8.

Two cars are traveling along perpendicular roads, car A at 40 mph, car B at 60 mph. At noon, when car A reaches the intersection, car B is 90 mi away, and moving toward it. At 1 P.M. the rate, in miles per hour, at which the distance between the cars is changing is

- (A) -40
- **(B)** 68
- (\mathbb{C}) 4
- (D)
- 40 **(E)**

9. If
$$f(x) = ax^4 + bx^2$$
 and $ab > 0$, then

- (A) the curve has no horizontal tangents
- (B) the curve is concave up for all x
- the curve is concave down for all x (C)
- (D) the curve has no inflection point
- (E) none of the preceding is necessarily true
- 10. A function f is continuous and differentiable on the interval [0,4], where f' is positive but f'' is negative. Which table could represent points on f?

(A) x	0	1	2	3	4
у	10	12	14	16	18

(B)
$$\frac{x}{y}$$
 | 0 | 1 | 2 | 3 | 4 |
 $\frac{1}{y}$ | 10 | 12* | 15 | 19 | 24

(C)
$$\frac{x}{y}$$
 | 0 | 1 | 2 | 3 | 4 | 2 | 10 | 18 | 24 | 28 | 30 |

(D)
$$\frac{x}{y}$$
 | 0 | 1 | 2 | 3 | 4 | 10 | 10

Use the graph of f' on [0,5], shown below, for Questions 11 and 12

- 11. f has a local minimum at x =
 - (A) 0
- **(B)** 1 **(C)** 2

- **12.** The graph of f has a point of inflection at x =
 - (A) 1 only
- (B) 2 only
- (**C**) 3 only

- (D) 2 and 3 only (E) none of these

- 13. It follows from the graph of f', shown at the right, that
 - (A) f is not continuous at x = a
 - (B) f is continuous but not differentiable at x = a
 - (C) f has a relative maximum at x = a
 - (D) The graph of f has a point of inflection at x = a
 - (E) none of these

14. Given f' as graphed, which could be the graph of f?

