

Polar Coordinates, (r, $\boldsymbol{\theta}$):

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}} \\
\theta=\tan ^{-1}\left(\frac{y}{x}\right) \text { if } x>0 \\
\text { or } \theta=\tan ^{-1}\left(\frac{y}{x}\right)+\pi, \text { if } x<0
\end{gathered}
$$

Distance between two points on the polar plane: $\sqrt{r_{1}{ }^{2}+r_{2}{ }^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}-\theta_{1}\right)}$

Complex Numbers, Rectangular (Standard) form: $\mathrm{z}=\mathrm{a}+\mathrm{bi}$

Absolute value (modulus): $|z|=\sqrt{a^{2}+b^{2}}$

Distance between 2 complex numbers is the modulus of their difference: $\left|z_{1}-z_{2}\right|$
$\underline{\text { Midpoint between } 2 \text { complex numbers }}$ is the average of the values: $\frac{z_{1}+z_{2}}{2}$

Polar (Trigonometric) Form of a complex number: $z=r(\cos \theta+i \sin \theta)$ or $\boldsymbol{r} \boldsymbol{c i s} \theta$
Where $a=r \cos \theta, b=r \sin \theta, r=\sqrt{a^{2}+b^{2}}$, and $\tan \theta=\frac{b}{a}$ (remember to add π if a <0)

Multiplication of Complex Numbers
$z_{1} \cdot z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$

Division of Complex Numbers
$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right], r_{2} \neq 0$

De Moivre's Theorem (Powers of a Complex Number)
$z^{n}=[r(\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \theta+i \sin n \theta)$
nth Roots of a Complex Number
$\sqrt[n]{r}\left(\cos \frac{\theta+2 \pi k}{n}+i \sin \frac{\theta+2 \pi k}{n}\right), k=0,1,2, \ldots, n-1$

