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BC Calculus Unit 9 Parametric and Polar Test Review WS #3
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Calculators Allowed: Show all work that lead to your answer to earn full credit.

1) What is the slope of the tangent line to the curve defined parametrically by x(t) = v/t and y(t) = 1(tz - 4),
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3) Which of the following gives the length of the path described by ihe parametric equations x = % and
y=1=-2tfrom0<t<3?
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4)  The position of a particle moving in the xy-plane is
defined by the vector-valued function, ¥set v(t)=o for [Ah ver-/v’t«j
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5) Attimet, 0 <t < 2, the position of a particle
moving along a path in the xy-plane is given by the

vector-valued function, f(t) = {e?‘ cost,
e? sint). Find the slope of the path of the particle

attime t = -’25

x(t)= e cost + w[»-ﬁt}

('rr/; e cos 771) +e (Sm["/:)
): Re. [0) -+ ﬂ(’l)

(‘t) Je amt 'H.Z

Yy ( A)': dz SMZ /1)“'6 ('/D‘i[hz)

oy
dx

mn

= de C}) + e w(‘{) = Je
‘J"[F%') J«?
(1%) —-e,"""

¢ ‘”/;

6) Calculator active. Attimet > 0,a particle moving in the xy-plane has a velocity vector given by v(t) =
(2,27, 1f the particle is at point (1 2) at time t = (), how far is the particle from the origin at time £ = 1?
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7) Calculator active. The position of a particle at time t > 0 is given by x{(¢t) =
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the total distance traveled by the particle fromt = 0 to t = 2
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8) Calculator active. The velocity vector a particle moving in the xy-plane has components given by %3:- = sin 2t

and —Z = ¢St Attime t = 2, the position of the particle is (3,2). What is the x-coordinate of the position

vector at fime t = 3?
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9) A particle moves along the polar curve 7 = 4 — 2 cos 8 so that — = 4. Find the value of — at g =
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10) Calculator active. For a certain polar curve r = f(8), it is known that X — 3cos0 — 30 sin @ and

d = 3(sin 8 + 6 cos §). What is the value of— at g = 3?
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11) The graph to the right shows the polarcurver = 2 + cosf for0 < 6 < =
What is the area of the region bounded by the curve and the x-axis? 2 ¢ 9
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12) Find the area of the shaded region for the polar curve r = 1 — cos 4. 0.1#%
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13)Find the total area enclosed by the polar curve r = 2 + 2 cos 26 shown in the figure
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14)Write do not solve, an integral expression that represents the area enclosed by the smaller loop of the polar

curver =1~ 2siné.

quadrant.

0, i ) .t'?-/
¥ Hmf Poiar Zevos 4 _ L b/
' réa = 2 i (23»'1@) 19
r=l-2sin6 "
O= [~ Asin G-
4
dgin@ = |
, !
Sin @ == ‘3-
- Ty 5w
= /é /i
15) Find the limits of integration required to find the area of one petal of the polar graph r = 4 sin 38 in the second
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16) What is the total area between the polar curves r = 2 sin 36 and r = 5 sin 36.
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17)

The figure to the right shows the graphs of the polar curves r = 2 cos? § and
T = 4 cos? 6 for — E L£8< % Which of the following integrals gives the
area of the region bounded between the two polar curves"
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18) Find the total area in the first quadrant of the common interior of r = 4§in 26 and r = 2.
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19) Find the area of the common interior of the polar graphs r = 3 cos@ and r = 3 sin 8
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20)

Let S be the region in the 1* Quadrant bounded above by the graph of the

polar curve 1 = cos 6 and bounded below by the graph of the polar curve
roe= = 9 as shown in the figure. The two curves intersect when 8 = 0.275.
What 15 the area of §?
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