Name \qquad Date \qquad Period \qquad

Worksheet 9.1—Intro to Parametric \& Vector Calculus

Show all work. No calculator unless explicitly stated.

Short Answer

1. If $x=t^{2}-1$ and $y=e^{t^{3}}$, find $\frac{d y}{d x}$.
2. If a particle moves in the $x y$ - plane so that at any time $t>0$, its position vector is $\left\langle\ln \left(t^{2}+5 t\right), 3 t^{2}\right\rangle$, find its velocity vector at time $t=2$.
3. A particle moves in the $x y$-plane so that at any time t, its coordinates are given by $x=t^{5}-1$, $y=3 t^{4}-2 t^{3}$. Find its acceleration vector at $t=1$.
4. If a particle moves in the $x y$ - plane so that at time t, its position vector is $\left\langle\sin \left(3 t-\frac{\pi}{2}\right), 3 t^{2}\right\rangle$, find the velocity vector at time $t=\frac{\pi}{2}$.
5. A particle moves on the curve $y=\ln x$ so that its x-component has velocity $x^{\prime}(t)=t+1$ for $t \geq 0$. At time $t=0$, the particle is at the point $(1,0)$. Find the position of the particle at time $t=1$.
6. A particle moves in the $x y$-plane in such a way that its velocity vector is $\left\langle 1+t, t^{3}\right\rangle$. If the position vector at $t=0$ is $\langle 5,0\rangle$, find the position of the particle at $t=2$.
7. A particle moves along the curve $x y=10$. If $x=2$ and $\frac{d y}{d t}=3$, what is the value of $\frac{d x}{d t}$?
8. The position of a particle moving in the $x y$-plane is given by the parametric equations
$x=t^{3}-\frac{3}{2} t^{2}-18 t+5$ and $y=t^{3}-6 t^{2}+9 t+4$. For what value(s) of t is the particle at rest?
9. A curve C is defined by the parametric equations $x=t^{3}$ and $y=t^{2}-5 t+2$. Write an equation of the line tangent to the graph of C at the point $(8,-4)$.
10. (Calculator Permitted) A particle moves in the $x y$-plane so that the position of the particle is given by $x(t)=5 t+3 \sin t$ and $y(t)=(8-t)(1-\cos t)$. Find the velocity vector at the time when the particle's horizontal position is $x=25$.

Free Response:

11. The position of a particle at any time $t \geq 0$ is given by $x(t)=t^{2}-3$ and $y(t)=\frac{2}{3} t^{3}$.
(a) Find the magnitude of the velocity vector at time $t=5$.
(b) Find the total distance traveled by the particle from $t=0$ to $t=5$.
(c) Find $\frac{d y}{d x}$ as a function of x.
12. Point $P(x, y)$ moves in the $x y$-plane in such away that $\frac{d x}{d t}=\frac{1}{t+1}$ and $\frac{d y}{d t}=2 t$ for $t \geq 0$.
(a) Find the coordinates of P in terms of t when $t=1, x=\ln 2$, and $y=0$.
(b) Write an equation expressing y in terms of x.
(c) Find the average rate of change of y with respect to x as t varies from 0 to 4 .
(d) Find the instantaneous rate of change of y with respect to x when $t=1$.
13. Consider the curve C given by the parametric equations $x=2-3 \cos t$ and $y=3+2 \sin t$, for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$.
(a) Find $\frac{d y}{d x}$ as a function of t.
(b) Find an equation of the tangent line at the point where $t=\frac{\pi}{4}$.
(c) (Calculator Permitted) The curve C intersects the y-axis twice. Approximate the length of the curve between the two y-intercepts.

Multiple Choice:

14. A parametric curve is defined by $x=\sin t$ and $y=\csc t$ for $0<t<\frac{\pi}{2}$. This curve is
(A) increasing \& concave up
(B) increasing \& concave down
(C) decreasing \& concave up (D) decreasing \& concave down
(E) decreasing with a point of inflection
15. The parametric curve defined by $x=\ln t, y=t$ for $t>0$ is identical to the graph of the function
(A) $y=\ln x$ for all real x
(B) $y=\ln x$ for $x>0$
(C) $y=e^{x}$ for all real x
(D) $y=e^{x}$ for $x>0$
(E) $y=\ln \left(e^{x}\right)$ for $x>0$
16. The position of a particle in the $x y$ - plane is given by $x=t^{2}+1$ and $y=\ln (2 t+3)$ for all $t \geq 0$. The acceleration vector of the particle is
(A) $\left(2 t, \frac{2}{2 t+3}\right)$
(B) $\left(2 t,-\frac{4}{(2 t+3)^{2}}\right)$
(C) $\left(2, \frac{4}{(2 t+3)^{2}}\right)$
(D) $\left(2, \frac{2}{(2 t+3)^{2}}\right)$
(E) $\left(2,-\frac{4}{(2 t+3)^{2}}\right)$
