Name \qquad Date \qquad Period \qquad

Worksheet 9.2 II—Parametric \& Vector Review

Show all work on a separate sheet of paper. A calculator IS permitted, except on problems $1 \& 2$.

1. (No Calculator) The position of a particle at any time $t \geq 0$ is given by $x(t)=t^{2}-2, y(t)=\frac{2}{3} t^{3}$.
a) Find the magnitude of the velocity vector at $t=2$.
b) Set up an integral expression to find the total distance traveled by the particle from $t=0$ to $t=4$.
c) Find $\frac{d y}{d x}$ as a function of x.
d) At what time t is the particle on the y-axis? Find the acceleration vector at this time.
2. (No Calculator) An object moving along a curve in the $x y$-plane has position $\langle x(t), y(t)\rangle$ at time t with the velocity vector $\vec{v}(t)=\left(\frac{1}{t+1}, 2 t\right)$. At time $t=1$, the object is at $(\ln 2,4)$.
a) Find the position vector.
b) Write an equation for the line tangent to the curve when $t=1$.
c) Find the magnitude of the velocity vector when $t=1$.
d) At what time $t>0$ does the line tangent to the particle at $\langle x(t), y(t)\rangle$ have a slope of 12 ?
3. A particle moving along a curve in the $x y$-plane has position $\langle x(t), y(t)\rangle$, with $x(t)=2 t+3 \sin t$ and $y(t)=t^{2}+2 \cos t$, where $0 \leq t \leq 10$. Find the velocity vector at the time when the particle's vertical position is $y=7$.
4. A particle moving along a curve in the $x y$-plane has position $\langle x(t), y(t)\rangle$ at time t with $\frac{d x}{d t}=1+\sin \left(t^{3}\right)$. The derivative $\frac{d y}{d t}$ is not explicitly given. For any $t \geq 0$, the line tangent to the curve at $\langle x(t), y(t)\rangle$ has a slope of $t+3$. Find the acceleration vector of the object at time $t=2$.
5. An object moving along a curve in the $x y$-plane has position $\langle x(t), y(t)\rangle$ at time t with $\frac{d x}{d t}=\cos \left(e^{t}\right)$ and $\frac{d y}{d t}=\sin \left(e^{t}\right)$ for $0 \leq t \leq 2$. At time $t=1$, the object is at the point $(3,2)$.
a) Find the equation of the tangent line to the curve at the point where $t=1$.
b) Find the speed of the object at $t=1$.
c) Find the total distance traveled by the object over the time interval $0 \leq t \leq 2$.
d) Find the position of the object at time $t=2$.
6. A particle moving along a curve in the $x y$-plane has position $\langle x(t), y(t)\rangle$ at time t with $\frac{d x}{d t}=\sin \left(t^{3}-t\right)$ and $\frac{d y}{d t}=\cos \left(t^{3}-t\right)$. At time $t=3$, the particle is at the point $(1,4)$.
a) Find the acceleration vector for the particle at $t=3$.
b) Find the equation of the tangent line to the curve at the point where $t=3$.
c) Find the magnitude of the velocity vector at $t=3$.
d) Find the position of the particle at time $t=2$.
7. An object moving along a curve in the $x y$-plane has position $\langle x(t), y(t)\rangle$ at time t with $\frac{d y}{d t}=2+\sin \left(e^{t}\right)$. The derivative of $\frac{d x}{d t}$ is not explicitly given. At $t=3$, the object is at the point $(4,5)$.
a) Find the y-coordinate of the position at time $t=1$.
b) At time $t=3$, the value of $\frac{d y}{d x}$ is -1.8 . Find the value of $\frac{d x}{d t}$ when $t=3$.
c) Find the speed of the object at time $t=3$.
