Name \qquad Date \qquad Period \qquad

Worksheet 9.2—Parametric \& Vector Accumulation

Show all work. No calculator except unless specifically stated.

Short Answer/Free Response

1. If $x=e^{2 t}$ and $y=\sin (3 t)$, find $\frac{d y}{d x}$ in terms of t.
2. Write an integral expression to represent the length of the path described by the parametric equations $x=\cos ^{3} t$ and $y=\sin ^{2} t$ for $0 \leq t \leq \frac{\pi}{2}$.
3. For what value(s) of t does the curve given by the parametric equations $x=t^{3}-t^{2}-1$ and $y=t^{4}+2 t^{2}-8 t$ have a vertical tangent?
4. Find the equation of the tangent line to the curve given by the parametric equations $x(t)=3 t^{2}-4 t+2$ and $y(t)=t^{3}-4 t$ at the point on the curve where $t=1$.
5. If $x(t)=e^{t}+1$ and $y=2 e^{2 t}$ are the equations of the path of a particle moving in the $x y-\mathrm{plane}$, write an equation for the path of the particle in terms of x and y.
6. (Calculator) A particle moves in the $x y$ - plane so that its position at any time t is given by $x=\cos (5 t)$ and $y=t^{3}$. What is the speed of the particle when $t=2$?
7. (Calculator) The position of a particle at time $t \geq 0$ is given by the parametric equations $x(t)=\frac{(t-2)^{3}}{3}+4$ and $y(t)=t^{2}-4 t+4$.
(a) Find the magnitude of the velocity vector at $t=1$.
(b) Find the total distance traveled by the particle from $t=0$ to $t=1$.
(c) When is the particle at rest? What is its position at that time?
8. (Calculator) An object moving along a curve in the $x y$ - plane has position $(x(t), y(t))$ at time $t \geq 0$ with $\frac{d x}{d t}=1+\tan \left(t^{2}\right)$ and $\frac{d y}{d t}=3 e^{\sqrt{t}}$. Find the acceleration vector and the speed of the object when $t=5$.
9. (Calculator) A particle moves in the $x y$-plane so that the position of the particle is given by $x(t)=t+\cos t$ and $y(t)=3 t+2 \sin t, 0 \leq t \leq \pi$. Find the velocity vector when the particle's vertical position is $y=5$.
10. (Calculator) An object moving along a curve in the $x y$ - plane has position $(x(t), y(t))$ at time t with $\frac{d x}{d t}=2 \sin \left(t^{3}\right)$ and $\frac{d y}{d t}=\cos \left(t^{2}\right)$ for $0 \leq t \leq 4$. At time $t=1$, the object is at the position $(3,4)$.
(a) Write an equation for the line tangent to the curve at $(3,4)$.
(b) Find the speed of the object at time $t=2$.
(c) Find the total distance traveled by the object over the time interval $0 \leq t \leq 1$.
(d) Find the position of the object at time $t=2$.

Multiple Choice:

11. (Calculator) An object moving along a curve in the $x y$ - plane has position $(x(t), y(t))$ with $\frac{d x}{d t}=\cos \left(t^{2}\right)$ and $\frac{d y}{d t}=\sin \left(t^{3}\right)$. At time $t=0$, the object is at position $(4,7)$. Where is the particle when $t=2$?
(A) $\langle-0.564,0.989\rangle$
(B) $\langle 0.461,0.452\rangle$
(C) $\langle 3.346,7.989\rangle$
(D) $\langle 4.461,7.452\rangle$
(E) $\langle 5.962,8.962\rangle$
12. (Calculator) The path of a particle moving in the plane is defined parametrically as a function of time t by $x=\sin 2 t$ and $y=\cos 5 t$. What is the speed of the particle at $t=2$?
(A) 1.130
(B) 3.018
(C) $\langle-1.307,2.720\rangle$
(D) $\langle 0.757,0.839\rangle$
(E) $\langle 1.307,2.720\rangle$
13. For what values of t does the curve given by the parametric equations $x=t^{3}-t^{2}-1$ and $y=t^{4}+2 t^{2}-8 t$ have a vertical tangent?
(A) 0 only
(B) 1 only
(C) 0 and $2 / 3$ only
(D) $0,2 / 3$, and 1
(E) No value
14. The distance traveled by a particle from $t=0$ to $t=4$ whose position is given by the vector $\stackrel{\mathrm{V}}{ }(t)=\left\langle t^{2}, t\right\rangle$ is given by
(A) $\int_{0}^{4} \sqrt{4 t+1} d t$
(B) $2 \int_{0}^{4} \sqrt{t^{2}+1} d t$
(C) $\int_{0}^{4} \sqrt{2 t^{2}+1} d t$
(D) $\int_{0}^{4} \sqrt{4 t^{2}+1} d t$
(E) $2 \pi \int_{0}^{4} \sqrt{4 t^{2}+1} d t$
