
Calculus Maximus                                                                                                                                                                                                WS 10.2: Polar Area 

Page 1 of 8 

 
 

Name_________________________________________ Date________________________ Period______ 
 
Worksheet 10.2—Polar Area 
Show all work.  No calculator except unless specifically stated. 
 
Short Answer: Sketch a graph, shade the region, and find the area. 
 
1.  one petal of ( )2cos 3r θ=              2.  one petal of ( )4sin 2r θ=   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.  interior of 2 2cosr θ= +                                                4.  interior of 2 sinr θ= −  
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5.  interior of ( )2 4sin 2r θ=                                                6.  inner loop of 1 2cosr θ= +  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
7.  between the loops of 1 2cosr θ= +             8.  one loop of ( )2 4cos 2r θ=  
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9.  inside 3cosr θ=  and outside 2 cosr θ= −              10. common interior of 4sinr θ=  and 2r =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11.  inside 3sinr θ=  and outside 1 sinr θ= +              12.  common interior of 3cosr θ=  and 1 cosr θ= +  
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13.  common interior of ( )4sin 2r θ=  and 2r =          14.  inside 2r =  and outside 2 sinr θ= −  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15. (Calculator Permitted) inside ( )2 2cos 2r θ= +  and outside 2r =  
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Free Response 

16.  (Calculator Permitted) The figure shows the graphs of the line 2
3

y x=  and the curve C  given by 

2

1
4
xy = − .  Let S  be the region in the first quadrant bounded by the two graphs and the x-axis.  The 

line and the curve intersect at point P.   

 
(a) Find the coordinates of P. 

 
 
 
 
 
 

(b) Set up and evaluate an integral expression with respect to x  
     that gives the area of S. 
 
 
 
 
 
 
 
(b) Find a polar equation to represent curve C. 

 
 
 
 
 
 

(d) Use the polar equation found in (c) to set up and evaluate an integral expression with respect to the 
polar angle θ  that gives the area of S. 
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17. (Calculator Permitted) A curve is drawn in the xy-plane and is described by the equation in polar 

coordinates ( )cos 3r θ θ= +  for 3
2 2
π πθ≤ ≤ , where r is measured in meters and θ  is measured in 

radians. 
(a) Find the area bounded by the curve and the y-axis. 

 
 
 
 
 
 
 
 
 

(b) Find the angle θ  that corresponds to the point on the curve with y-coordinate 1− . 
 
 
 
 
 
 
 
 
 

(c) For what values of θ , 3
2
ππ θ≤ ≤  is dr

dθ
 positive?  What does this say about r? 

 
 
 
 
 
 
 
 
 
 

(d) Find the value of θ  on the interval 3
2
ππ θ≤ ≤  that corresponds to the point on the curve with the 

greatest distance from the origin.  What is this greatest distance?  Justify your answer. 
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18. (Calculator Permitted)  A region R in the xy-plane is bounded below by the x-axis and above by the 

polar curve defined by 4
1 sin

r
θ

=
+

 for 0 θ π≤ ≤ . 

 
(a) Find the area of R by evaluating an integral in polar coordinates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) The curve resembles an arch of the parabola 28 16y x= − .  Convert the polar equation to 
rectangular coordinates, and prove that the curves are the same. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Set up an integral in rectangular coordinates that gives the area of R. 
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Multiple Choice 
 
19. Which of the following is equal to the area of the region inside the polar curve 2cosr θ=  and outside 

the polar curve cosr θ= ? 

(A) 
2

2

0

3 cos d

π

θ θ∫     (B) 2

0

3 cos d
π

θ θ∫      (C) 
2

2

0

3 cos
2

d

π

θ θ∫      (D) 
2

0

3 cos d

π

θ θ∫      (E) 
0

3 cos d
π

θ θ∫  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
20. (Calculator permitted) The area of the region enclosed by the polar graph of 3 cosr θ= +  is given by 

which integral? 

(A) 
2

0

3 cos d
π

θ θ+∫      (B) 
0

3 cos d
π

θ θ+∫      (C) ( )
/ 2

0

2 3 cos d
π

θ θ+∫  

(D) ( )
0

3 cos d
π

θ θ+∫      (E) 
/ 2

0

3 cos d
π

θ θ+∫  

 
 
 
 
 
 
 
 

 
21. The area enclosed by one petal of the 3-petaled rose curve ( )4cos 3r θ=  is given by which integral? 

(A) ( )
/ 3

/ 3

16 cos 3 d
π

π

θ θ
−
∫      (B) ( )

/ 6

/ 6

8 cos 3 d
π

π

θ θ
−
∫      (C) ( )

/ 3
2

/ 3

8 cos 3 d
π

π

θ θ
−
∫  

(D) ( )
/ 6

/ 6

16 cos 3 d
π

π

θ θ
−
∫      (E) ( )

/ 6
2

/ 6

8 cos 3 d
π

π

θ θ
−
∫  

 
 


