Chapter 10.1 - Circles VOCABULARY
Circle: set of all points in a plane quickistan from a given point, the center: center radius
Radius (plural is radii). Radius is a <u>segment</u> with endpoints at the <u>center</u> and on the <u>circle</u>
chord: a <u>Segment</u> with <u>endpoints</u> on the <u>Circle</u> Dues not have to go through the center of diameter: a <u>chord</u> that passes through the <u>center</u> of the circle Circle
$C = 2\pi r$ circumference of a circle is the <u>distance</u> around the <u>Circle</u> .
piπ is an irrational number. Pi is the <u>Circumference</u> divided by the <u>diameter</u>
inscribed: A Polygon is inscribed in a circle if all of its Vertices lie on the circle
circumscribed : A circle is circumscribed about a polygon if all of it contains all the vertices of the polygon.
central angle (of a circle): is an angle with the <u>Vertex</u> in the <u>Center</u> of the circle:
arc: an unbroken part of the <u>Circle</u>
tangent: a line intersecting civile at only point.
secant: a line that intersects a <u>Circle</u> at <u>D</u> points
Chard Ord segment: when 2 chards intersect inside a Circle each chard is divided into 2 chard segments

Circle name_

diameter AB

identify the following:

radius AC or BC

 $C = 2\pi(3)$

If CB = 9 what is the diameter of Circle C? $\frac{18}{100}$ Examples: What is the circumference of Circle C? $\frac{C=18\pi}{}$

Tell whether the line, ray, or segment is best described as a Segment radius, chord, diameter, secant, or tangent of $\odot P$.

Find the radius or diameter. Then find the circumference: $C = 2\pi r$

 $C = 2\pi r$ or $d\pi$. Remember: d = 2r and $r = \frac{1}{2}d$.

1.
$$r = 16$$
 $c = 32\pi$ $c = 2\pi(16)$ $c = 32\pi$

2.
$$d = \frac{24}{C} = \frac{24\pi}{C}$$

$$C = 24\pi$$

$$C = 24\pi$$

1.
$$r = 16$$
 $c = 32\pi$

$$C = 2\pi(16)$$

$$= 32\pi$$

$$(12)$$

$$2. d = 24\pi$$

$$C = 12\pi$$

4.
$$r = \frac{4.5}{11} c = \frac{9\pi}{11}$$
5. $r = \frac{34}{11} c = \frac{6\pi 4}{11}$
64

5.
$$c = \frac{3y}{C} = \frac{6\pi y}{C}$$

$$c = 2\pi (3y)$$

6.
$$d = \frac{3\pi}{2} \times c = \frac{3\pi}{2} \times \frac{3\pi}{4} \times c = \frac{3\pi}{2} \times \frac{3\pi}{4} \times c = \frac{3\pi}{4} \times \frac{3\pi}{4} \times c = \frac{3\pi}{4} \times \frac{3\pi}{4} \times c = \frac{6\pi}{4} \times \frac{3\pi}{2} \times \frac{3\pi}{4} \times \frac{3$$

Skills Practice

Circles and Circumference

For Exercises 1-7, refer to $\odot P$.

1. Name the circle.

3. Name a chord. $\bigcirc \leftarrow$

- 4. Name a diameter.
- 5. Name a radius not drawn as part of a diameter.
- **6.** Suppose the diameter of the circle is 16 centimeters. Find the radius.

7. If PC = 11 inches, find AB.

The diameters of $\odot F$ and $\odot G$ are 5 and 6 units, respectively. Find each measure.

9. AB 4

Find the diameter and radius of a circle with the given circumference. Round to $17.2 = 2\pi r$ $17.2 = \pi d$ the nearest hundredth.

10.
$$C = 36 \text{ m}$$

$$C = 2\pi r$$
 $36 = 2\pi r$
 $r = \frac{36}{2\pi} = 18\pi$
11. $C = 17.2$ ft

12.
$$C = 81.3 \text{ cm}$$

13.
$$C = 5 \text{ ye}^2$$

13.
$$C = 5 \text{ yd}$$
 $5 = 2 \pi r$ $5 = \pi d$

C= 200r

 $S(B=2\pi)$ Find the exact circumference of each circle.

14.

15.

10-1 Practice

ircles and Circumference

For Exercises 1–7, refer to $\odot L$.

1. Name the circle.

2. Name a radius. RL ov LT

3. Name a chord. SR or TS

- 4. Name a diameter. RT
- 5. Name a radius not drawn as part of a diameter. $\angle W$
- 6. Suppose the radius of the circle is 3.5 yards. Find the diameter. A = 7yAs.
- 7. If RT = 19 meters, find LW.

The diameters of $\bigcirc L$ and $\bigcirc M$ are 20 and 13 units, respectively, and OR = 4. Find each measure.

8. *LQ*

9. RM

and the diameter and radius of a circle with the given circumference. Round to the nearest hundredth.

10. C = 21.2 ft

11. C = 5.9 m

Find the exact circumference of each circle using the given inscribed or circumscribed polygon.

12.

13.

- 14. SUNDIALS Herman purchased a sundial to use as the centerpiece for a garden. The diameter of the sundial is 9.5 inches.
 - a. Find the radius of the sundial.
- r=475 m
- **b.** Find the circumference of the sundial to the nearest hundredth.

(= Td

8