
## HOW DO THE SIDES OF A 30-60-90 RIGHT TRIANGLE RELATE TO EACH OTHER?



Notes:

- 1) To convert short  $leg \rightarrow hypotenuse$ , <u>multiply</u> short leg by 2
- 2) To convert hypotenuse  $\rightarrow$  short leg, <u>divide</u> hypotenuse by 2
- 3) To convert short leg  $\rightarrow$  long leg, <u>multiply</u> short leg by  $\sqrt{3}$
- 4) To convert long leg  $\rightarrow$  short leg, <u>divide</u> long leg by  $\sqrt{3}$

1.) Complete the table for the special right triangle below. Express irrational values in simplest radical form.




| а     | b · | С  |
|-------|-----|----|
|       | 5   |    |
|       | 7   |    |
| ,     |     | 10 |
| 2√3   | ·   |    |
| 12 √3 |     |    |
| 4     |     |    |
|       | 4√3 |    |
| 2√6   |     |    |
| 7     |     |    |

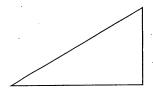
1. Find the missing sides for the  $30^{\circ}-60^{\circ}-90^{\circ}$  triangle below.

a. 
$$x = 9$$

b. 
$$y = 5\sqrt{3}$$

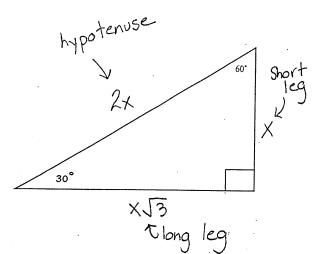
c. 
$$z = 32\sqrt{2}$$




d. 
$$x = \frac{19}{2}$$

e. 
$$y = \frac{\sqrt{3}}{2}$$

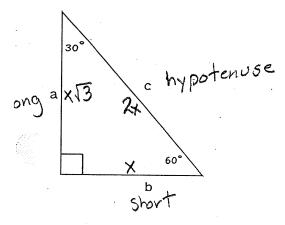
f. 
$$z = 10$$


2. A road sign is shaped like an equilateral triangle. Use your knowledge of  $30^{\circ}-60^{\circ}-90^{\circ}$  triangles to find the approximately area of the road sign. The length of the base of the equilateral triangle is 36 inches.

3. Find the area of the  $30^{\circ}-60^{\circ}-90^{\circ}$  triangle with an hypotenuse of 12 feet. Round decimal answers to the nearest tenth

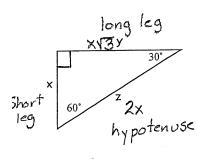


5. The bases on a softball field form a square with a side length of 60 feet. You throw a softball from first base to third base. How far do you throw the softball?


## HOW DO THE SIDES OF A 30-60-90 RIGHT TRIANGLE RELATE TO EACH OTHER?



Notes:


- 1) To convert short  $leg \rightarrow hypotenuse$ , multiply short leg by 2
- 2) To convert hypotenuse → short leg, <u>divide</u> hypotenuse by 2
- 3) To convert short leg  $\rightarrow$  long leg, multiply short leg by  $\sqrt{3}$
- 4) To convert long leg  $\rightarrow$  short leg, <u>divide</u> long leg by  $\sqrt{3}$

1.) Complete the table for the special right triangle below. Express irrational values in simplest radical form.



| а           | b    | С   |
|-------------|------|-----|
| 5√3         | 5    | 10  |
| 7√3         | 7    | 14  |
| 5√3         | 5    | 10  |
| 2√3         | 2    | 4   |
| 12√3        | 12   | 24  |
| 4           | 4 13 | 813 |
| 4 √6<br>2√6 | 4√3  | 813 |
| 2√6         | 2√3  | 453 |
| 7           |      |     |

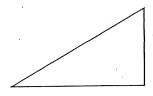
1. Find the missing sides for the  $30^{\circ}-60^{\circ}-90^{\circ}$  triangle below.



a. 
$$x = 9$$
  
 $y = 9\sqrt{3}$   
 $z = 18$ 

b. 
$$y = 5\sqrt{3}$$
  
 $X = 5$   
 $Z = 10$ 

c. 
$$z = 32\sqrt{2}$$
  
 $X = 16\sqrt{2}$   
 $Y = 16\sqrt{6}$ 


d. 
$$x = \frac{19}{2}$$
 $y = \frac{19}{2}\sqrt{3}$ 
 $z = 19$ 

e. 
$$y = \frac{\sqrt{3}}{2}$$
$$X = \frac{1}{2}$$
$$Z = 1$$

f. 
$$z = 10$$
  
-X = 5  
 $y = 5\sqrt{3}$ 

2. A road sign is shaped like an equilateral triangle. Use your knowledge of  $30^{\circ}-60^{\circ}-90^{\circ}$  triangles to find the approximately area of the road sign. The length of the base of the equilateral triangle is 36 inches.

3. Find the area of the  $30^{\circ}-60^{\circ}-90^{\circ}$  triangle with an hypotenuse of 12 feet. Round decimal answers to the nearest tenth



5. The bases on a softball field form a square with a side length of 60 feet. You throw a softball from first base to third base. How far do you throw the softball?