Geometry

Ch. 4.6 Isosceles and Equilateral Triangles

Properties of Isosceles Triangles:

The two congruent sides are called the **legs of an isosceles triangle**, and the angle with sides that are the legs is called the **vertex angle**. The side of the triangle opposite the vertex angle is called the *base*. The two angles formed by the base and the congruent sides are called the **base angles**.

∠1 is the vertex angle.

 $\angle 2$ and $\angle 3$ are the base angles.

Theorems Isosceles Triangle

4.10 Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Example If $\overline{AC} \cong \overline{BC}$, then $\angle 2 \cong \angle 1$.

4.11 Converse of Isosceles Triangle Theorem

If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

Example If $\angle 1 \cong \angle 2$, then $\overline{FE} \cong \overline{DE}$.

Corollaries Equilateral Triangle

4.3 A triangle is equilateral if and only if it is equiangular.

Example If $\angle A \cong \angle B \cong \angle C$, then $\overline{AB} \cong \overline{BC} \cong \overline{CA}$.

4.4 Each angle of an equilateral triangle measures 60.

Example If
$$\overline{DE} \cong \overline{EF} \cong \overline{FE}$$
, then $m \angle A = m \angle B = m \angle C = 60$.

Proof Isosceles Triangle Theorem

Given: $\triangle LMP$; $\overline{LM} \cong \overline{LP}$

Prove: $\angle M \cong \angle P$

Proof:

Statements

Reasons

Find each measure.

a. $m \angle Y$

8 in. Y

b. YZ

Find the value of each variable:

Find the value of each variable:

Find each measure.

3. FH

4. mZMRP

CGSS SENSE-MAKING Find the value of each variable.

5.

6.

Refer to the figure at the right.

9 If $\overline{AB} \cong \overline{AE}$, name two congruent angles.

10. If $\angle ABF \cong \angle AFB$, name two congruent segments.

11. If $\overline{CA} \cong \overline{DA}$, name two congruent angles.

12. If $\angle DAE \cong \angle DEA$, name two congruent segments.

13. If $\angle BCF \cong \angle BFC$, name two congruent segments.

14. If $\overline{FA} \cong \overline{AH}$, name two congruent angles.

Find each measure.

15. *m∠BAC* A

16. *m∠SRT*

17. TR

18. *CB*

CCSS REGULARITY Find the value of each variable.

(19)

20.

21.

22.

4-6 WorkSheet

Isosceles and Equilateral Triangles

Properties of Isosceles Triangles An **isosceles triangle** has two congruent sides called the *legs*. The angle formed by the legs is called the **vertex angle**. The other two angles are called **base angles**. You can prove a theorem and its converse about isosceles triangles.

- If two sides of a triangle are congruent, then the angles opposite those sides are congruent. (Isosceles Triangle Theorem)
- If two angles of a triangle are congruent, then the sides opposite those angles are congruent. (Converse of Isosceles Triangle Theorem)

С

If $\overline{AB} \cong \overline{CB}$, then $\angle A \cong \angle C$. If $\angle A \cong \angle C$, then $\overline{AB} \cong \overline{CB}$.

Example 1: Find x, given $\overline{BC} \cong \overline{BA}$.

Example 2: Find x.

Exercises

ALGEBRA Find the value of each variable.

1.

2.

3.

4.

5.

6.

7. PROOF Write a two-column proof.

Given: $\angle 1 \cong \angle 2$ Prove: $\overline{AB} \cong \overline{CB}$

4-6 Worksheet (continued)

Isosceles and Equilateral Triangles

Properties of Equilateral Triangles An **equilateral triangle** has three congruent sides. The Isosceles Triangle Theorem leads to two corollaries about equilateral triangles.

- 1. A triangle is equilateral if and only if it is equiangular.
- 2. Each angle of an equilateral triangle measures 60°.

Example: Prove that if a line is parallel to one side of an equilateral triangl then it forms another equilateral triangle.

Proof:

Statements	Reasons
1. $\triangle ABC$ is equilateral; $\overline{PQ} \parallel \overline{BC}$. 2. $m \angle A = m \angle B = m \angle C = .60$	1. Given 2.
3. $\angle 1 \cong \angle B$, $\angle 2 \cong \angle C$	3.
4. $m \angle 1 = 60$, $m \angle 2 = 60$ 5. $\triangle APQ$ is equilateral.	4. 5.

Exercises

ALGEBRA Find the value of each variable.

1.

2

3

4

5

6.

7. PROOF Write a two-column proof.

Given: $\triangle ABC$ is equilateral; $\angle 1 \cong \angle 2$.

Prove: $\angle ADB \cong \angle CDB$

4-6 WorkSneet

Isosceles and Equilateral Triangles

Properties of Isosceles Triangles An isosceles triangle has two congruent sides called the *legs*. The angle formed by the legs is called the vertex angle. The other two angles are called base angles. You can prove a theorem and its converse about isosceles triangles.

- If two sides of a triangle are congruent, then the angles opposite those sides
 are congruent. (Isosceles Triangle Theorem)
 If two angles of a triangle are congruent, then the sides opposite those angles
- are congruent. (Converse of Isosceles Triangle Theorem)

If $\overline{AB} \cong \overline{CB}$, then $\angle A \cong \angle C$. If $\angle A \cong \angle C$, then $\overline{AB} \cong \overline{CB}$.

Example 1: Find x, given $\overline{BC} \cong \overline{BA}$.

$$(4x + 5)$$
.

$$S$$

$$3x - 13$$

$$R$$

$$2x$$

$$T$$

Example 2: Find x.

Exercises

2.
$$S = 2x + 6$$

TROOF Write a two-column proof. Given: $\angle 1 \cong \angle 2$ Prove: $\overline{AB} \cong \overline{CB}$

4-6 Worksheet (continued)

Isosceles and Equilateral Triangles

Properties of Equilateral Triangles An **equilateral triangle** has three congruent sides. The Isosceles Triangle Theorem leads to two corollaries about equilateral triangles.

- A triangle is equilateral if and only if it is equiangular.
 Each angle of an equilateral triangle measures 60°.

Example: Prove that if a line is parallel to one side of an equilateral triangle then it forms another equilateral triangle.	o one side of an equilateral triangl
Proof:	
Statements	Reasons
1. $\triangle ABC$ is equilateral; $\overline{PQ} \parallel \overline{BC}$.	1. Given
2. $m \angle A = m \angle B = m \angle C = 60$	2.
3. $\angle 1 \cong \angle B$, $\angle 2 \cong \angle C$	3.
4. $m \angle 1 = 60$, $m \angle 2 = 60$	4. 1
5. △APO is equilateral.	D.

Exercises

∆APQ is equilateral.

ALGEBRA Find the value of each variable.

PROOF Write a two-column proof. Given: $\triangle ABC$ is equilateral; $\angle 1 \cong \angle 2$. Prove: $\angle ADB \cong \angle CDB$

