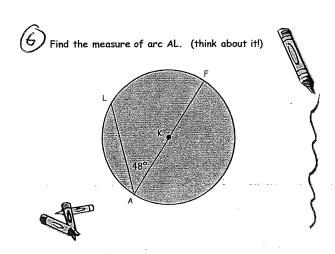
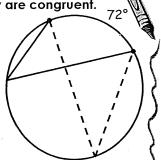
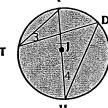

Section 6.4 Inscribed Angles and Polygons

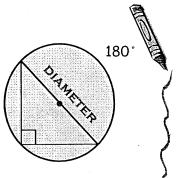


Inscribed Angle:
An angle whose
Vertex is on
the circle and
whose sides
are chords of
the circle



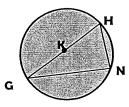

If two inscribed angles intercept the same arc, then they are congruent.

8


Example 5

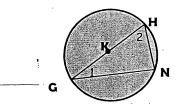
In \bigcirc J, $m \not \Im 3 = 5x$ and $m \not \Im 4 = 2x + 9$. Find the value of x.

(9)


If a right triangle is inscribed in a circle then the hypotenuse is the diameter of the circle.

(10)

Example 6


In \bigcirc K, \overline{GH} is a diameter and $m \not\supset GNH = 4x - 14$. Find the value of x.

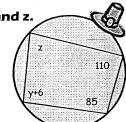
(11) _E.

Example 7

in \bigcirc K, $m \not \supset 1 = 6x - 5$ and $m \not \supset 2 = 3x - 4$. Find the value of x.

(a

A circle can be circumscribed around a quadrilateral if and only if its opposite angles are supplementary.


 $m\angle A + m\angle C = 180$

$$m\angle B + m\angle D = 180$$

(13)

Example 8 Find y and z.

10

