A.P. Calculus AB Chapter 7.1-7.2 Area & Volume Unit Review WS #3

1) Given the region below enclosed by $f(x) = \ln(x - 3)$, the line $y = 7 - \frac{1}{4}x$, and the x – axis.

- 2) Given the region below enclosed by $f(x) = \ln(x+6)$, the line y = -3, and x = 5.
- a) Find the Volume of solid generated when the enclosed region is revolved about the line y = -4 (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

b) Find the Volume of solid generated when the enclosed region is revolved about the line x = 5 (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

3) Given the region below enclosed by $f(x) = \sqrt{x+6}$, the $g(x) = e^x + 1$

a) Find the Volume of solid generated when the enclosed region is revolved about the line x = -6 (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

- 3) Given the region below enclosed by $f(x) = \sqrt{x+6}$, the $g(x) = e^x + 1$
- b) The enclosed region is the base of a solid. The cross section of the solid taken <u>parallel</u> to the <u>y-axis</u> is a isosceles right triangle with hypotenuse on base. Find the volume of the given solid. (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

4) Given the region below enclosed by $f(x) = -x^2 + 4$ and $g(x) = -\frac{1}{2}x + 2$

Find the Volume of solid generated when the enclosed region is revolved about the line y = 4 (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

7.1-7.2 Area & Volume Formula Sheet

$$Area = \int_{y_1}^{y_2} (Right \ graph - Left \ graph) dy$$
(in the form of "x = ___")

Disc Method: (Top - Bottom) - Vertical Radius -**Horizontal AOR**

$$V = \pi \int_{x_1}^{x_2} [R(x)]^2 dx$$

(expression(s) used above has form: " y = ____")

Disc Method: (Right - Left) - Horizontal Radius **Vertical AOR**

$$V = \pi \int_{y_1}^{y_2} [R(y)]^2 dy$$

(expression(s) used above has form: "x = ____")

Washer Method: (Top – Bottom), Vertical Radius (Horizontal AOR)

$$V = \pi \int_{x_1}^{x_2} [R(x)]^2 - [r(x)]^2 dx$$

(expression(s) used above has form: "y = ____")

Washer Method: (Right - Left), Horizontal Radius (Vertical AOR)

$$V = \pi \int_{y_1}^{y_2} [R(y)]^2 - [r(y)]^2 dy$$

(expression(s) used above has form: "x = ____")

Top-Bottom Vertical base

$$V = \int_{x_1}^{x_2} [Area \text{ of cross section}] dx$$

*Note: All values in integral are in terms of x (in the form of "y =")

Right-Left Horizontal base

$$V = \int_{y_1}^{y_2} [Area \text{ of cross section}] dy$$

*Note: All values in integral are in terms of y (in the forms of "x = _____")

Area formulas for Cross sections:

1. Square:
$$A = (base)^2$$
 | 2. Isosceles Right Triangle (leg on base): $A = \frac{1}{2}(base)^2$ | 3. Isosceles Right Triangle (hypotenuse on base): $A = \frac{1}{4}(base)^2$ | 4. Rectangle: $A = (base)(height)$ | 5. Equilateral Triangle: $A = \frac{\sqrt{3}}{4}(base)^2$ | 6. Semicircle: $A = \frac{\pi}{8}(base)^2$