A.P. Calculus AB Chapter 7.1-7.2 Area \& Volume Unit Review WS \#3

1) Given the region below enclosed by $f(x)=\ln (x-3)$, the line $y=7-\frac{1}{4} x$, and the x - axis.

2) Given the region below enclosed by $f(x)=\ln (x+6)$, the line $y=-3$, and $x=5$.
a) Find the Volume of solid generated when the enclosed region is revolved about the line $y=-4$ (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

3) Given the region below enclosed by $f(x)=\ln (x+6)$, the line $y=-3$, and $x=5$.
b) Find the Volume of solid generated when the enclosed region is revolved about the line $x=5$ (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

4) Given the region below enclosed by $f(x)=\sqrt{x+6}$, the $g(x)=e^{x}+1$
a) Find the Volume of solid generated when the enclosed region is revolved about the line $x=-6$ (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

5) Given the region below enclosed by $f(x)=\sqrt{x+6}$, the $g(x)=e^{x}+1$
b) The enclosed region is the base of a solid. The cross section of the solid taken parallel to the y-axis is a isosceles right triangle with hypotenuse on base. Find the volume of the given solid. (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

6) Given the region below enclosed by $f(x)=-x^{2}+4$ and $g(x)=-\frac{1}{2} x+2$

Find the Volume of solid generated when the enclosed region is revolved about the line $y=4$ (Write the integral notation as well as the numeric approximation rounded to 3 decimal places)

7.1-7.2 Area \& Volume Formula Sheet

$$
\begin{aligned}
& \text { Area }=\int_{x_{1}}^{x_{2}}(\text { Top graph }- \text { Bottom graph }) d x \\
& \text { (in the forms of " } \mathrm{y}=\ldots \text { ") } \\
& V=\pi \int_{x_{1}}^{x_{2}}[R(x)]^{2} d x \\
& \text { (expression(s) used above has form: " } \mathrm{y}=\ldots \text { ") } \\
& V=\pi \int_{x_{1}}^{x_{2}}[R(x)]^{2}-[r(x)]^{2} d x
\end{aligned}
$$

Area $=\int_{y_{1}}^{y_{2}}($ Right graph - Left graph $) d y$ (in the form of " $x=$ \qquad ")

Washer Method: (Right - Left), Horizontal Radius

 (Vertical AOR)$$
V=\pi \int_{y_{1}}^{y_{2}}[R(y)]^{2}-[r(y)]^{2} d y
$$

(expression(s) used above has form: " $x=$ \qquad ")

Disc Method: (Right - Left) - Horizontal Radius Vertical AOR

$$
V=\pi \int_{y_{1}}^{y_{2}}[R(y)]^{2} d y
$$

(expression(s) used above has form: " $x=$ \qquad ")
——)

Top-Bottom Vertical base

$V=\int_{x_{1}}^{x_{2}}[$ Area of cross section $] d x$
*Note: All values in integral are in terms of x (in the form of " $y=$ \qquad ")

Right-Left Horizontal base

$V=\int_{y_{1}}^{y_{2}}[$ Area of cross section $] d y$
*Note: All values in integral are in terms of y (in the forms of " $x=$ \qquad ")

Area formulas for Cross sections:

1. Square: $A=(\text { base })^{2}$	2. Isosceles Right Triangle (leg on base): $A=\frac{1}{2}(\text { base })^{2}$	3. $\underline{\text { Isosceles Right Triangle (hypotenuse on }}$ base): $A=\frac{1}{4}(\text { base })^{2}$
4. Rectangle: A = (base)(height)	5. $\underline{\text { Equilateral Triangle: }: ~} A=\frac{\sqrt{3}}{4}(\text { base })^{2}$	6. $\underline{\text { Semicircle: } A=\frac{\pi}{8}(b a s e)^{2}}$

