Accelerated Pre-Calculus January & February 2023 Unit 6 – Vectors				
23	24	25	26	27
Matrices Applications Day 2	Unit 5 Review	Unit 5 Test- Matrices	6.01 Review Right Triangle Trig	6.02 Introduction to Geometric VectorsGeometric Vectors
			HW: 6.01 Practice	HW: 6.02 Practice
30	31	Feb 1	2	3
 6.03 More Geometric Vectors Vector Game Direction 	6.04 Geometric and Algebraic Vectors Harry Potter Task HW: Finish 6.04	6.05 AlgebraicVectorsComponent FormOperationsUnit Vectors	6.06 More AlgebraicVectorsMagnitudeDirection	 6.07 Angle with Vectors Angle Between Vectors Orthogonal Vectors Parallel Vectors
HW: 6.03 Practice	Task	HW: 6.05 Practice	HW 6.06 Practice	HW: 6.07 Practice
6	7	8	9	10
6.10 Bearings	6.08 Quiz Review	6.09 Quiz Vector Operations	6.11 Vector Applications Day 1	6.12 Vector Applications Day 2
HW: Finish 6.10	HW: Study for Quiz		HW: 6.11 Application Practice Worksheet	HW: 6.12 Application Day 2 Practice
13	14	15	16	17
6.13 Test Review	Test Review	TEST: Vectors in 2 dimensions		
HW: 6.13 Test Review Worksheet				

Homework Keys:

tinyurl.com/MiltonAPC

Vectors

2D Vectors: $\vec{u} = \langle a_1, b_1 \rangle$ and $\vec{v} = \langle a_2, b_2 \rangle$

- 1. **Component form** shows the vector from the *initial point* to the *terminal point* based on the <u>displacement</u> of its dimensional values:
 - 2D vector, from (x_1, y_1) to (x_2, y_2) : $\vec{v} = \langle x_2 x_1, y_2 y_1 \rangle$
- 2. **Unit vector** is a vector of length 1. The standard unit vectors are $\vec{i} = \langle 1, 0 \rangle$ and $\vec{j} = \langle 0, 1 \rangle$. A vector can be written as the *sum of unit vectors* by using its components as scalars of standard unit vectors:
 - 2D vector: $\vec{v} = a\vec{i} + b\vec{j}$
- 3. **Magnitude** (length) of a vector:
 - 2D vector: $|\vec{v}| = \sqrt{a^2 + b^2}$
- 4. **Direction** of a vector:
 - 2D vector: $\theta = \tan^{-1}\left(\frac{b}{a}\right) + 0^{\circ}, 180^{\circ}, 180^{\circ}, or 360^{\circ}$
- 5. Given the **magnitude** and the **direction** of a vector, it is possible to determine its components:
 - 2D vector with magnitude $|\vec{v}|$ and direction θ , $\vec{v} = |\vec{v}| \langle \cos \theta, \sin \theta \rangle = \langle |\vec{v}| \cos \theta, |\vec{v}| \sin \theta \rangle$
- 6. **Resultant vector** is the sum of two or more vectors.
 - Geometrically, this is shown with the *tip-to-tail* method, also known as the *triangle* method. The *parallelogram* method also can determine the resultant vector.
 - Algebraically, this is calculated by finding the sum of the corresponding components.
 - 2D vectors: $\vec{u} + \vec{v} = \langle a_1 + a_2, b_1 + b_2 \rangle$

7. Scalar multiplication:

- 2D vector: $k\vec{v} = \langle ka, kb \rangle$
- 8. Dot product (inner product) is used to determine if two vectors are perpendicular:
 - 2D vectors: $\vec{u} \cdot \vec{v} = a_1 a_2 + b_1 b_2$
 - For magnitude: $|\vec{v}| = \sqrt{\vec{v} \cdot \vec{v}}$
 - 2 vectors are orthogonal (perpendicular) if their dot product equals 0.
- 9. Angle between two vectors can be found with a dot product:
 - 2D vectors: $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|}$
- 10. Angles have different ways of being measured:
 - Standard Position is measured from the positive x-axis, with positive angles opening counter-clockwise.
 - **True Bearing** or **Compass Bearing** is measured from North, with positive angles opening clockwise. True bearing measurement = 450° – Standard position measurement Standard position measurement = 450° – True bearing measurement
 - **Quadrant Bearing** is measured either from North or from South, opening toward East or toward West in such a way that the angle value is always acute.