Accelerated Pre-Calculus January \& February 2023 Unit 6 - Vectors				
Monday	Tuesday	Wednesday	Thursday	Friday
23 Matrices Applications Day 2	24 Unit 5 Review	25 Unit 5 Test- Matrices	26 6.01 Review Right Triangle Trig HW: 6.01 Practice	27 6.02 Introduction to Geometric Vectors - Geometric Vectors HW: 6.02 Practice
30 6.03 More Geometric Vectors - Vector Game - Direction HW: 6.03 Practice	31 6.04 Geometric and Algebraic Vectors Harry Potter Task HW: Finish 6.04 Task	Feb 1 6.05 Algebraic Vectors - Component Form - Operations - Unit Vectors HW: 6.05 Practice	2 6.06 More Algebraic Vectors - Magnitude - Direction HW 6.06 Practice	3 6.07 Angle with Vectors - Angle Between Vectors - Orthogonal Vectors - Parallel Vectors HW: 6.07 Practice
6 6.10 Bearings HW: Finish 6.10	7 6.08 Quiz Review HW: Study for Quiz	$\begin{array}{\|l\|} \hline 8 \\ \text { 6.09 Quiz } \\ \text { Vector Operations } \end{array}$	9 6.11 Vector Applications Day 1 HW: 6.11 Application Practice Worksheet	10 6.12 Vector Applications Day 2 HW: 6.12 Application Day 2 Practice
13 6.13 Test Review HW: 6.13 Test Review Worksheet	14 Test Review	15 TEST: Vectors in 2 dimensions	16	17

Homework Keys:

tinyurl.com/MiltonAPC

Vectors

2D Vectors: $\vec{u}=\left\langle a_{1}, b_{1}\right\rangle$ and $\vec{v}=\left\langle a_{2}, b_{2}\right\rangle$

1. Component form shows the vector from the initial point to the terminal point based on the displacement of its dimensional values:

- 2D vector, from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right): \vec{v}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle$

2. Unit vector is a vector of length 1 . The standard unit vectors are $\vec{\imath}=\langle 1,0\rangle$ and $\vec{\jmath}=\langle 0,1\rangle$. A vector can be written as the sum of unit vectors by using its components as scalars of standard unit vectors:

- 2D vector: $\vec{v}=a \vec{\imath}+b \vec{\jmath}$

3. Magnitude (length) of a vector:

- 2 D vector: $|\vec{v}|=\sqrt{a^{2}+b^{2}}$

4. Direction of a vector:

- 2D vector: $\theta=\tan ^{-1}\left(\frac{b}{a}\right)+0^{\circ}, 180^{\circ}, 180^{\circ}$, or 360°

5. Given the magnitude and the direction of a vector, it is possible to determine its components:

- 2D vector with magnitude $|\vec{v}|$ and direction $\theta, \vec{v}=|\vec{v}|\langle\cos \theta, \sin \theta\rangle=\langle | \vec{v}|\cos \theta,|\vec{v}| \sin \theta\rangle$

6. Resultant vector is the sum of two or more vectors.

- Geometrically, this is shown with the tip-to-tail method, also known as the triangle method. The parallelogram method also can determine the resultant vector.
- Algebraically, this is calculated by finding the sum of the corresponding components.
- 2D vectors: $\vec{u}+\vec{v}=\left\langle a_{1}+a_{2}, b_{1}+b_{2}\right\rangle$

7. Scalar multiplication:

- 2D vector: $k \vec{v}=\langle k a, k b\rangle$

8. Dot product (inner product) is used to determine if two vectors are perpendicular:

- 2D vectors: $\vec{u} \cdot \vec{v}=a_{1} a_{2}+b_{1} b_{2}$
- For magnitude: $|\vec{v}|=\sqrt{\vec{v} \cdot \vec{v}}$
- 2 vectors are orthogonal (perpendicular) if their dot product equals 0 .

9. Angle between two vectors can be found with a dot product:

- 2D vectors: $\cos \theta=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$

10. Angles have different ways of being measured:

- Standard Position is measured from the positive x-axis, with positive angles opening counter-clockwise.
- True Bearing or Compass Bearing is measured from North, with positive angles opening clockwise.

True bearing measurement $=450^{\circ}-$ Standard position measurement
Standard position measurement $=450^{\circ}-$ True bearing measurement

- Quadrant Bearing is measured either from North or from South, opening toward East or toward West in such a way that the angle value is always acute.

