Name: \qquad Period: \qquad

Accel. Pre-Calculus

$$
\text { Unit } 12 \text { Packet }
$$

Trig Review

$\text { May } 2022$ Units I2Trig Review				
7 APs: Psychology, Chem, Spanish Lit II.OI Radian and Unit Circle Review HW: II.OI Worksheet	8 APs: Physics I, Spanish Lang II. 02 Co-Terminal, find θ HW: II. 02 Worksheet	9 APs: Japanese, Eng Lit/Comp, Physics 2 I I. 03 Review Pythagorean Identities HW: II. 03 Worksheet	IO APs: Govt/Pol., Environmental Sci II. 04 Review Double Angle Identities HW: II. 04 Worksheet	II APs: US History, Comp Sci Principles I 1.05 Solve Trig Equations HW: II. 05 Worksheet
14 APs: Physics C, Music Theory, Bio II. 06 Review HW: II. 06 WS	I5 APs: Comp Sci A, Calc AB/BC, French I I. 07 Quiz	16 APs: English Lang/Comp, Macro Exam Review	17 APs: Statistics, World History Exam Review	I8 APs: Micro Econ, Human Geo, Latin Exam Review
21 $7^{\text {th }}$ period Final Exams	22 $I^{\text {st }}$ and $3^{\text {rd }}$ period Final Exams	23 $2^{\text {nd }}$ and $4^{\text {th }}$ period Final Exams	24 Graduation! $6^{\text {th }}$ and $5^{\text {th }}$ period Final Exams	

Trigonometric Identities

Reciprocal Identities:

$\begin{array}{lll}\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\ \csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \boldsymbol{\operatorname { c o t }} \theta=\frac{1}{\tan \theta}\end{array}$

Pythagorean Identities:

```
\(\sin ^{2} \theta+\cos ^{2} \theta=1\)
```


Cofunction Identities:

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \\
& \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta
\end{aligned}
$$

Even/Odd Identities:

$$
\begin{aligned}
& \sin (-\theta)=-\sin \theta \\
& \csc (-\theta)=-\csc \theta
\end{aligned}
$$

Sum \& Difference Identities:

$\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$

Double-Angle Identities:

$\sin 2 \theta=2 \sin \theta \cos \theta$

Half-Angle Identities:

$$
\sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}}
$$

$$
\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta
$$

$$
\begin{aligned}
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
& =2 \cos ^{2} \theta-1 \\
& =1-2 \sin ^{2} \theta
\end{aligned}
$$

1-2 $\sin ^{2} \theta$

$$
\begin{aligned}
& \csc \left(\frac{\pi}{2}-\theta\right)=\sec \theta \\
& \sec \left(\frac{\pi}{2}-\theta\right)=\csc \theta
\end{aligned}
$$

$$
\begin{aligned}
& \cos (-\theta)=\cos \theta \\
& \sec (-\theta)=\sec \theta
\end{aligned}
$$

$\tan ^{2} \theta+1=\sec ^{2} \theta$
$1+\cot ^{2} \theta=\csc ^{2} \theta$

Quotient Identities:

$$
\begin{aligned}
\tan \theta & =\frac{\sin \theta}{\cos \theta} \\
\cot \theta & =\frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

$$
\tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta
$$

$$
\cot \left(\frac{\pi}{2}-\theta\right)=\tan \theta
$$

$$
\tan (-\theta)=-\tan \theta
$$

$$
\cot (-\theta)=-\cot \theta
$$

$$
\begin{aligned}
\tan \frac{\theta}{2} & = \pm \sqrt{\frac{1-\cos \theta}{1+\cos \theta}} \\
& =\frac{1-\cos \theta}{\sin \theta}=\frac{\sin \theta}{1+\cos \theta}
\end{aligned}
$$

Fill in The Unit Circle

The Unit Circle

Accelerated Precalculus
Investigation: What is a radian?

I. LabActivity

Materials for each 8roup of 3 students:

- One len8th of strin8 • Ruler (metric) • Pencil/Pen

Steps:

1. Tie the string around a pencil. Tie a knot at the other end of the strin δ.
2. Draw a point on the paper.
3. Have one student hold the knotted end of the string on the point drawn and another student hold the pencil.
4. With the string pulled taut, carefully draw a circle around the point.
5. Mark a point on the circumference of the circle.
6. Draw a radius connecting the point in step $\# 5$ to the center point.
7. Place one end of the string on the point in step \#5. Wrap the string alon 8 the circle. Mark another point on the circle at the other end of the string. You have now marked off a length equal to one radius along the circumference
8. Now move the string so that it starts at the point found in $\# 7$ and wraps further around the circle. Mark the end of the string.
9. Continue mapping the len 8 th of the strin 8 around the circumference of the circle makin δ sure that you mark the end of the string as you 80 .
10. Draw radii from the center of the circle to each of the marks that you made around the circumference of the circle. Label these angles, startin δ with angle \#1, then angle \#2, and so on.

Observations about the Circle \& the Ansles

a. How many of your angles are approximately the same measure?
b. If you were to cut the circle in half (havin8 only 180°), how many of these con 8 ruent angles can be completely (no partial angles) drawn within the half circle?
c. Again thinking of only a half circle, how many of these con 8 ruent angles would it take to completely fill the half circle? (A decimal answer is appropriate here.)
d. With your previous observation in mind, how many of these same angles could you then draw within the entire circle?

II. Notes

A new unit of measurement for angles: a radian is the measure of an angle in a circle whose intercepted arc has a len8th equal to the radius.

Remember the formula relating the len8th of a radius of a circle to the circumference of the circle:

$$
\mathrm{C}=
$$

About the center of a circle is \qquad degrees.
Also about the center of a circle is \qquad radians.

Therefore: \qquad ${ }^{\circ}$ is equivalent to \qquad radians

Or simplified, \qquad ${ }^{\circ}=$ \qquad radians
(This is our conversion unit!)

III. Practice

Plot the approximate location of each radian ansle on the circle to the risht, measured in standard position.

1. $\frac{7 \pi}{6}$ radians
2. $\frac{11 \pi}{3}$ radians
3. $-\frac{5 \pi}{4}$ radians
4. $-\frac{3 \pi}{2}$ radians
5. $-\frac{13 \pi}{12}$ radians
6. 1 radian
7. 4.5 radians
8. -2 radians
9. -1.2 radians
10. $\frac{\pi}{10}$ radians
11. $\frac{5 \pi}{18}$ radians
12. $-\frac{8 \pi}{15}$ radians

Convert each of the radian measurements above (\#1-12) into de8ree measurements.

1 b .
$3 b$.

5 b.
6b.

7b.
8b.

10b.

11b.
12b.

Accelerated Pre-Calculus

Date: \qquad

11.01: Building the Unit Circle

Unit Circle \qquad

1) Draw a radius from the origin to a point on the unit circle in Ql.

What is the length of the radius? \qquad Why? \qquad
2) Draw a line from that point perpendicular to the x-axis. What is the result? \qquad
What are the coordinates of the point (and every point) on the circle? \qquad
3) Label the reference angle, Θ.

Define the following in terms of x and y :

$\sin \theta=$ \qquad $\cos \theta=$ \qquad $\tan \theta=$ \qquad
$\csc \theta=$ \qquad $\sec \theta=$ \qquad $\cot \theta=$ \qquad

Given that (x, y) represents $(\cos \theta, \sin \theta)$, use the coordinates to answer the following:
$\sin 90^{\circ}=$ \qquad
$\tan 270^{\circ}=$ \qquad $\tan 180^{\circ}=$ \qquad
$\cos \pi=$ \qquad
$\sec 2 \pi=$ \qquad

Let's take a look at the unit circle a special triangle, 45-45-90.

Now draw $\theta=45^{\circ}$ on the unit circle. What is 45° in radians? \qquad

The coordinates for 45° are:
$\sin 45^{\circ}=$ \qquad $\cos 45^{\circ}=$
$\csc 45^{\circ}=$ \qquad $\sec 45^{\circ}=$ \qquad $\tan 45^{\circ}=$ \qquad $\cot 45^{\circ}=$ \qquad

Let's take a look at the unit circle and another special triangle, 30-60-90.

Now draw $\theta=30^{\circ}$ on the unit circle. What is 30° in radians? \qquad

The coordinates for 30° are:
\qquad
$\sin 30^{\circ}=$
$\cos 30^{\circ}=$ \qquad
$\csc 30^{\circ}=$ \qquad
$\sec 30^{\circ}=$ \qquad
$\tan 30^{\circ}=$ \qquad $\cot 30^{\circ}=$ \qquad

Now draw $\theta=60^{\circ}$ on the unit circle. What is 60° in radians? \qquad

The coordinates for 60° are: \qquad
$\sin 60^{\circ}=$ \qquad
$\cos 60^{\circ}=$ \qquad
$\csc 60^{\circ}=$ \qquad $\sec 60^{\circ}=$ \qquad $\tan 60^{\circ}=$ \qquad $\cot 60^{\circ}=$ \qquad

Simplify the following using what you know about trigonometry and the unit circle.

1. $\cos \frac{3 \pi}{4}$
2. $\cos 0$
3. $\sin \frac{2 \pi}{3}$
4. $\sin \frac{11 \pi}{6}$
5. $\cos \frac{7 \pi}{6}$
6. $\cos \frac{5 \pi}{3}$
7. $\sin \pi$
8. $\sin \frac{5 \pi}{4}$
9. $\sec \frac{7 \pi}{4}$
10. $\sec \frac{\pi}{2}$
11. $\csc \frac{4 \pi}{3}$
12. $\csc \frac{5 \pi}{6}$
13. $\sec \frac{\pi}{6}$
14. $\sec \frac{2 \pi}{3}$
15. $\csc \frac{3 \pi}{2}$
16. $\csc \frac{3 \pi}{4}$
17. $\tan \frac{5 \pi}{4}$
18. $\tan \frac{2 \pi}{3}$
19. $\cot \frac{11 \pi}{6}$
20. $\cot 0$
21. $\tan \frac{5 \pi}{6}$
22. $\tan \pi$
23. $\cot \frac{3 \pi}{4}$
24. $\cot \frac{4 \pi}{3}$
25. $\csc \frac{5 \pi}{3}$
26. $\tan \frac{3 \pi}{2}$
27. $\cot \frac{2 \pi}{3}$
28. $\sec \frac{5 \pi}{4}$

State all angles in the interval $[0,2 \pi)$ that solve each of the following equations.
29. $\cos \theta=\frac{1}{2}$
30. $\cos \theta=-\frac{\sqrt{2}}{2}$
31. $\sin \theta=-\frac{1}{2}$
32. $\sin \theta=1$
33. $\cos \theta=0$
34. $\cos \theta=-\frac{\sqrt{3}}{2}$
35. $\sin \theta=\frac{\sqrt{2}}{2}$
36. $\sin \theta=\frac{\sqrt{3}}{2}$
37. $\sec \theta=-1$
38. $\sec \theta=-2$
39. $\csc \theta=-\frac{2 \sqrt{3}}{3}$
40. $\csc \theta=-\sqrt{2}$
41. $\tan \theta=1$
42. $\tan \theta=-\sqrt{3}$
43. $\cot \theta=\frac{\sqrt{3}}{3}$
44. $\cot \theta=0$
45. $\sin \theta=5$
46. $\csc \theta=0$
\qquad

Unit Circle Trigonometry \& Coterminal Angles

State two co-terminal angles, one positive and one negative, with the given angle.
a. $\frac{7 \pi}{10}$
b. $-\frac{2 \pi}{9}$
c. $\frac{21 \pi}{5}$
d. $-\frac{17 \pi}{7}$

State the co-terminal angle between $[0,2 \pi)$ with the given angle.
e. $\frac{41 \pi}{3}$
f. $-\frac{31 \pi}{8}$
g. $\frac{59 \pi}{10}$
h. $-\frac{33 \pi}{7}$

Simplify the following using what you know about trigonometry, the unit circle, and coterminal angles.

1. $\cos \frac{17 \pi}{3}$
2. $\cos 6 \pi$
3. $\sin \frac{19 \pi}{6}$
4. $\sin \frac{21 \pi}{4}$
5. $\cos \left(-\frac{17 \pi}{6}\right)$
6. $\cos \left(-\frac{5 \pi}{3}\right)$
7. $\sin (-7 \pi)$
8. $\sin \left(-\frac{23 \pi}{3}\right)$
9. $\sec \frac{17 \pi}{4}$
10. $\sec \frac{9 \pi}{2}$
11. $\csc \frac{14 \pi}{3}$
12. $\csc \frac{25 \pi}{6}$
13. $\sec \left(-\frac{13 \pi}{6}\right)$
14. $\sec \left(-\frac{17 \pi}{3}\right)$
15. $\csc \left(-\frac{5 \pi}{2}\right)$
16. $\csc \left(-\frac{3 \pi}{4}\right)$
17. $\tan \frac{15 \pi}{4}$
18. $\tan \frac{29 \pi}{6}$
19. $\cot \frac{11 \pi}{3}$
20. $\cot 8 \pi$
21. $\tan \left(-\frac{17 \pi}{6}\right)$
22. $\tan (-9 \pi)$
23. $\cot \left(-\frac{9 \pi}{4}\right)$
24. $\cot \left(-\frac{14 \pi}{3}\right)$

State all angles that solve each of the following equations.

25. $\cos \theta=\frac{\sqrt{3}}{2}$
26. $\cos \theta=-\frac{\sqrt{3}}{2}$
27. $\sin \theta=\frac{1}{2}$
28. $\sin \theta=-1$
29. $\cos \theta=1$
30. $\cos \theta=-\frac{1}{2}$
31. $\sin \theta=-\frac{\sqrt{2}}{2}$
32. $\sin \theta=-\frac{\sqrt{3}}{2}$
33. $\sec \theta=1$
34. $\sec \theta=2$
35. $\csc \theta=\frac{2 \sqrt{3}}{3}$
36. $\csc \theta=\sqrt{2}$
37. $\tan \theta=-1$
38. $\tan \theta=\sqrt{3}$
39. $\cot \theta=-\frac{\sqrt{3}}{3}$
40. $\csc \theta=1$
\qquad

Pythagorean Identities

Use the following to develop the Pythagorean Identities.
1a. On the arc mark a point and label it (x, y).
b. Connect the origin to your point.
c. From your point draw a segment perpendicular to the x -axis, forming a right triangle.

d. Given that the radius $=1$, use the Pythagorean Theorem to write an equation representing the sides of the triangle.

2a. Using your equation from \#1d, substitute x and y with $\cos \theta$ and $\sin \theta$, respectively. This is one of the Pythagorean Identities.
b. Solve for $\sin ^{2} \theta$, and write this new form:
\qquad
\qquad
c. Solve for $\cos ^{2} \theta$, and write this form:

3a. Using your equation from \#2, divide each term by $\cos ^{2} \Theta$.
b. Simplify. Your equation should not contain any fractions. This is another Pythagorean Identity.
*
c. Give 2 additional forms (see \#2b-c):

4a. Using your equation again from \#2, divide each term by $\sin ^{2} \theta$.
b. Simplify. Your equation should not contain any fractions. This is also a Pythagorean Identity.
*
c. Give 2 additional forms:

Simplify each, using a Pythagorean Identity.

1. $\frac{1+\tan ^{2} x}{\csc ^{2} x}$
2. $\frac{1-\cos ^{2} x}{\sin x}$
3. $\sin x-\sin ^{3} x$
4. $\cos ^{3} x+\cos x \sin ^{2} x$
5. $\frac{1-\sin ^{2} x}{\csc ^{2} x-1}$
6. $\frac{\sin ^{2} x+\tan ^{2} x+\cos ^{2} x}{\sec x}$
7. $\frac{\cot ^{2} x}{1+\csc x}$
8. $(\cos x-\sin x)^{2}+(\cos x+\sin x)^{2}$
9. $\frac{(\sec x+1)(\sec x-1)}{\sin ^{2} x}$
10. $\frac{1-\sin ^{2} x}{1-\cos ^{2} x} * \tan x$

Answer Bank: sinx
$\sec ^{2} x$
$\cos x$
$\csc x-1$
$\sin ^{2} x$
$\sin x \cos ^{2} x \quad 2$
$\cot x$
secx
\qquad

Double Angle Identities

Double angle identities: $\sin 2 \theta, \cos 2 \theta$, and $\tan 2 \theta$. Where do they come from? Derive each.
For $\sin 2 \theta$, use the angle sum formula: $\sin (x+y)=\sin x \cos y+\cos x \sin y$

$$
* \sin 2 \theta=
$$

\qquad

For $\cos 2 \theta$, use the angle sum formula: $\cos (x+y)=\cos x \cos y-\sin x \sin y$

* $\cos 2 \theta=$ \qquad

There are two additional forms for $\cos 2 \theta$.
To find one, replace $\cos ^{2} \theta$ with $1-\sin ^{2} \theta$.
or $\cos 2 \theta=$ \qquad

To find the other, replace $\sin ^{2} \theta$ with $1-\cos ^{2} \theta$.
or $\cos 2 \theta=$ \qquad

For $\tan 2 \theta$, use the angle sum formula: $\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$

[^0]\qquad

Practice

a. Draw and label the reference triangle in the appropriate quadrant for the given trig information about theta. (You will need to determine the length of the third side of the triangle.)
b. Find the exact values of $\sin 2 \theta, \cos 2 \theta$, and $\tan 2 \theta$ using the double-angle formulas.

1. $\sin \theta=\frac{5}{13}$ and $\frac{\pi}{2}<\theta<\pi$

2. $\tan \theta=\frac{4}{3}$ and $\pi<\theta<\frac{3 \pi}{2}$

3. $\cos \theta=\frac{15}{17}$ and $\frac{3 \pi}{2}<\theta<2 \pi$

4. $\tan \theta=-2$ and $\cos \theta>0$

5. $\sin \theta=\frac{3}{5}$ and $\frac{\pi}{2}<\theta<\pi$

Using the $\tan \mathbf{2 \theta}$ formula, find only $\tan 2 \theta$

6. $\sin \theta<0$ and $\cos \theta=-\frac{7}{25}$

Using the $\tan \mathbf{2 \theta}$ formula, find only $\tan \mathbf{2 \theta}$

\qquad
Date \qquad Period \qquad

Solve each equation for the variable on the interval from [$0,2 \pi$). Use Pythagorean and/or Double Angle Identities to rewrite as needed.

1. $2 \sin ^{2} x=1$
2. $2 \sin ^{2} x+3 \sin x+1=0$
3. $\sin ^{2} x+1=\cos x$
4. $\sec ^{2} x+\tan x-1=0$
5. $\cot ^{2} x-\csc x=1$
6. $5 \sin x-5=\cos ^{2} x$
7. $\tan ^{2} x+3 \sec x+3=0$
8. $3 \sin x=2 \cos ^{2} x-3 \cot x \tan x$
9. $\cos 2 \theta-1=0$
10. $\cos 2 \theta+\cos \theta=0$
11. $\sin 2 \theta-\tan \theta=0$
12. $\sin 2 \theta-\cos \theta=0$
13. $\sin \theta=\cos 2 \theta-1$

Accelerated Precalculus

Quiz: Trigonometry Review

Name:
Date: \qquad Period: \qquad

Evaluate.

1. $\tan \frac{4 \pi}{3}$
2. $\sec \frac{3 \pi}{4}$
3. $\sin \left(-\frac{5 \pi}{6}\right)$
4. $\csc \frac{5 \pi}{3}$
5. $\cot (-\pi)$
6. $\cos \frac{23 \pi}{4}$
7. $\cot \frac{13 \pi}{3}$
8. $\csc \left(-\frac{\pi}{2}\right)$
9. $\sec \frac{7 \pi}{2}$
10. If $\sec \theta=-\frac{13}{12}$ and $\tan \theta>0$, find $\sin 2 \theta, \cos 2 \theta, \tan 2 \theta$.

Solve each equation for the variable on the interval from $[0,2 \pi)$.
11. $4 \cos ^{2} \theta-4 \cos \theta=3$
12. $1=\cot ^{2} \theta+\csc \theta$
13. $\sin 2 x \cos x=\sin x$

[^0]: * $\tan 2 \theta=$

