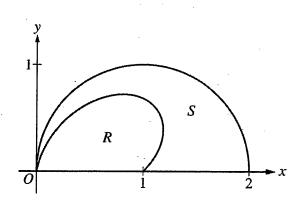
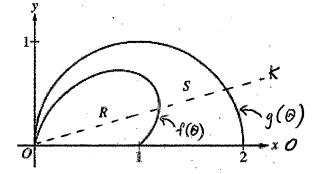
AB/BC Cirque Extra Credit Spring 2018 Assignment #2:

Directions: Create and Solve 1 original FRQ. Then answer the following 4 FRQs, make corrections (red ink) and score the FRQs. Due Mon(5/14)



The figure above shows the polar curves $r = f(\theta) = 1 + \sin \theta \cos(2\theta)$ and $r = g(\theta) = 2\cos \theta$ for $0 \le \theta \le \frac{\pi}{2}$. Let R be the region in the first quadrant bounded by the curve $r = f(\theta)$ and the x-axis. Let S be the region in the first quadrant bounded by the curve $r = g(\theta)$, and the x-axis.

- (a) Find the area of R.
- (b) The ray $\theta = k$, where $0 < k < \frac{\pi}{2}$, divides S into two regions of equal area. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of k.
- (c) For each θ , $0 \le \theta \le \frac{\pi}{2}$, let $w(\theta)$ be the distance between the points with polar coordinates $(f(\theta), \theta)$ and $(g(\theta), \theta)$. Write an expression for $w(\theta)$. Find w_A , the average value of $w(\theta)$ over the interval $0 \le \theta \le \frac{\pi}{2}$.
- (d) Using the information from part (c), find the value of θ for which $w(\theta) = w_A$. Is the function $w(\theta)$ increasing or decreasing at that value of θ ? Give a reason for your answer.



The figure above shows the polar curves $r = f(\theta) = 1 + \sin \theta \cos(2\theta)$ and $r = g(\theta) = 2\cos \theta$ for $0 \le \theta \le \frac{\pi}{2}$. Let R be the region in the first quadrant bounded by the curve $r = f(\theta)$ and the x-axis. Let S be the region in the first quadrant bounded by the curve $r = g(\theta)$, and the x-axis.

- (a) Find the area of R.
- (b) The ray $\theta = k$, where $0 < k < \frac{\pi}{2}$, divides <u>S</u> into two regions of equal area. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of k.
- (c) For each θ , $0 \le \theta \le \frac{\pi}{2}$, let $w(\theta)$ be the distance between the points with polar coordinates $(f(\theta), \theta)$ and $(g(\theta), \theta)$. Write an expression for $w(\theta)$. Find w_A , the average value of $w(\theta)$ over the interval $0 \le \theta \le \frac{\pi}{2}$.
- (d) Using the information from part (c), find the value of θ for which $w(\theta) = w_A$. Is the function $w(\theta)$ increasing or decreasing at that value of θ ? Give a reason for your answer.

[2] a) Area of
$$R = \frac{1}{2} \int_{0}^{\pi/2} [f(\theta)]^{2} d\theta = \frac{1}{2} \int_{0}^{\pi/2} [1 + \sin\theta\cos\theta]^{2} d\theta = 0.648$$

[3] b) Region $S = \frac{1}{2} \int_{0}^{\pi/2} g(\theta)^{2} d\theta - \frac{1}{2} \int_{0}^{\pi/2} f(\theta)^{2} d\theta$ of $S : \int_{0}^{2} \int_{0}^{\pi/2} g(\theta)^{2} - f(\theta)^{2} d\theta = \frac{1}{2} \int_{0}^{\pi/2} g(\theta)^{2} - f(\theta)^{2} d\theta$

2 c)
$$w(\theta) = g(\theta) - f(\theta)$$

Aug. Value theorem: $\frac{1}{6-a} \int_{a}^{b} w(\theta) d\theta = \frac{1}{n/2-0} \int_{0}^{\pi/2} g(\theta) - f(\theta) d\theta = \frac{2}{\pi} \int_{0}^{\pi/2} g(\theta) - f(\theta) d\theta = \frac{2\pi}{n} \int_{0}^{\pi/2} g(\theta) d\theta = \frac{2\pi}{n} \int_{0}^{\pi/2} g$

$$W(0.517) = -0.581$$

 $W(6)$ is decreasing since $W(0.518) < 0$

Question

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	· 2	5
2	9	2	3	1
. 3	10	-4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

- (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- (b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.
- (c) Let w be the function given by $w(x) = \int_1^{g(x)} f(t) dt$. Find the value of w'(3).
- (d) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.

AP® CALCULUS AB

Question

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	· 2	5
2	9	2	3	1
3	10	– 4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

- (a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- (b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.
- (c) Let w be the function given by $w(x) = \int_1^{g(x)} f(t) dt$. Find the value of w'(3).
- (d) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.
- (a) h(1) = f(g(1)) 6 = f(2) 6 = 9 6 = 3 h(3) = f(g(3)) - 6 = f(4) - 6 = -1 - 6 = -7Since h(3) < -5 < h(1) and h is continuous, by the Intermediate Value Theorem, there exists a value r, 1 < r < 3, such that h(r) = -5.
- $2: \begin{cases} 1: h(1) \text{ and } h(3) \\ 1: \text{conclusion, using IVT} \end{cases}$

(b) $\frac{h(3) - h(1)}{3 - 1} = \frac{-7 - 3}{3 - 1} = -5$

Since h is continuous and differentiable, by the Mean Value Theorem, there exists a value c, 1 < c < 3, such that h'(c) = -5.

- $2: \begin{cases} 1: \frac{h(3) h(1)}{3 1} \\ 1: \text{conclusion, using MVT} \end{cases}$
- (c) $w'(3) = f(g(3)) \cdot g'(3) = f(4) \cdot 2 = -2$
- $2: \left\{ \begin{array}{l} 1: apply \ chain \ rule \\ 1: answer \end{array} \right.$
- (d) g(1) = 2, so $g^{-1}(2) = 1$. $\left(g^{-1}\right)'(2) = \frac{1}{g'\left(g^{-1}(2)\right)} = \frac{1}{g'(1)} = \frac{1}{5}$

An equation of the tangent line is $y - 1 = \frac{1}{5}(x - 2)$.

3: $\begin{cases} 1:g^{-1}(2) \\ 1:(g^{-1})'(2) \\ 1: \text{tangent line equation} \end{cases}$

x	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
f(x)	-1	-4	-6	-7	-6	-4	-1
f'(x)	-7	-5	-3	0	3	5	7

Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f' for selected points x in the closed interval $-1.5 \le x \le 1.5$. The second derivative of f has the property that f''(x) > 0 for $-1.5 \le x \le 1.5$.

- (a) Evaluate $\int_0^{1.5} (3f'(x)+4) dx$. Show the work that leads to your answer.
- (b) Write an equation of the line tangent to the graph of f at the point where x = 1. Use this line to approximate the value of f(1.2). Is this approximation greater than or less than the actual value of f(1.2)? Give a reason for your answer.
- (c) Find a positive real number r having the property that there must exist a value c with 0 < c < 0.5 and f''(c) = r. Give a reason for your answer.
- (d) Let g be the function given by $g(x) = \begin{cases} 2x^2 x 7 & \text{for } x < 0 \\ 2x^2 + x 7 & \text{for } x \ge 0. \end{cases}$

The graph of g passes through each of the points (x, f(x)) given in the table above. Is it possible that f and g are the same function? Give a reason for your answer.

x	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
f(x)	-1	-4	-6	-7	-6	-4	-1
f'(x)	-7	-5	-3	0	3	5	7

Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f' for selected points x in the closed interval $-1.5 \le x \le 1.5$. The second derivative of f has the property that f''(x) > 0 for $-1.5 \le x \le 1.5$.

- (a) Evaluate $\int_0^{1.5} (3f'(x)+4) dx$. Show the work that leads to your answer.
- (b) Write an equation of the line tangent to the graph of f at the point where x = 1. Use this line to approximate the value of f(1.2). Is this approximation greater than or less than the actual value of f(1.2)? Give a reason for your answer.
- (c) Find a positive real number r having the property that there must exist a value c with 0 < c < 0.5 and f''(c) = r. Give a reason for your answer.
- (d) Let g be the function given by $g(x) = \begin{cases} 2x^2 x 7 & \text{for } x < 0 \\ 2x^2 + x 7 & \text{for } x \ge 0. \end{cases}$

The graph of g passes through each of the points (x, f(x)) given in the table above. Is it possible that f and g are the same function? Give a reason for your answer.

(a)
$$\int_0^{1.5} (3f'(x) + 4) dx = 3 \int_0^{1.5} f'(x) dx + \int_0^{1.5} 4 dx$$
$$= 3f(x) + 4x \Big|_0^{1.5} = 3(-1 - (-7)) + 4(1.5) = 24$$

- (b) y = 5(x-1)-4 $f(1.2) \approx 5(0.2)-4=-3$ The approximation is less than f(1.2) because the graph of f is concave up on the interval 1 < x < 1.2.
- (c) By the Mean Value Theorem there is a c with 0 < c < 0.5 such that $f''(c) = \frac{f'(0.5) f'(0)}{0.5 0} = \frac{3 0}{0.5} = 6 = r$

(d)
$$\lim_{x\to 0^-} g'(x) = \lim_{x\to 0^-} (4x-1) = -1$$

$$\lim_{x\to 0^+} g'(x) = \lim_{x\to 0^+} (4x+1) = +1$$
 Thus g' is not continuous at $x=0$, but f' is continuous at $x=0$, so $f\neq g$. OR
$$g''(x) = 4 \text{ for all } x\neq 0 \text{ , but it was shown in part}$$
 (c) that $f''(c) = 6$ for some $c\neq 0$, so $f\neq g$.

$$2 \begin{cases} 1: \text{ antiderivative} \\ 1: \text{ answer} \end{cases}$$

$$3 \begin{cases} 1: \text{ tangent line} \\ 1: \text{ computes } y \text{ on tangent line at } x = 1.2 \\ 1: \text{ answer with reason} \end{cases}$$

$$2 \begin{cases} 1: \text{ reference to MVT for } f' \text{ (or differentiability} \\ \text{ of } f') \\ 1: \text{ value of } r \text{ for interval } 0 \leq x \leq 0.5 \end{cases}$$

$$2 \begin{cases} 1: \text{ answers "no" with reference to} \\ g' \text{ or } g'' \\ 1: \text{ correct reason} \end{cases}$$

BC#1

The function f has a Taylor series about x = 1 that converges to f(x) for all x in the interval of convergence. It is known that f(1) = 1, $f'(1) = -\frac{1}{2}$, and the nth derivative of f at x = 1 is given by $f^{(n)}(1) = (-1)^n \frac{(n-1)!}{2^n}$ for $n \ge 2$.

- (a) Write the first four nonzero terms and the general term of the Taylor series for f about x = 1.
- (b) The Taylor series for f about x = 1 has a radius of convergence of 2. Find the interval of convergence. Show the work that leads to your answer.
- (c) The Taylor series for f about x = 1 can be used to represent f(1.2) as an alternating series. Use the first three nonzero terms of the alternating series to approximate f(1.2).
- (d) Show that the approximation found in part (c) is within 0.001 of the exact value of f(1.2).

The function f has a Taylor series about x = 1 that converges to f(x) for all x in the interval of convergence. It is known that f(1) = 1, $f'(1) = -\frac{1}{2}$, and the nth derivative of f at x = 1 is given by $f^{(n)}(1) = (-1)^n \frac{(n-1)!}{2^n}$ for $n \ge 2$.

- (a) Write the first four nonzero terms and the general term of the Taylor series for f about x = 1.
- (b) The Taylor series for f about x = 1 has a radius of convergence of 2. Find the interval of convergence. Show the work that leads to your answer.
- (c) The Taylor series for f about x = 1 can be used to represent f(1.2) as an alternating series. Use the first three nonzero terms of the alternating series to approximate f(1.2).
- (d) Show that the approximation found in part (c) is within 0.001 of the exact value of f(1.2).

2 a)
$$f''(1) = (-1)^{2}(2-1)! = \frac{1}{4}$$
 $f^{3}(1) = (-1)^{2}(3-1)! = \frac{1}{8} = \frac{1}{4}$
 $f^{3}(1) = (-1)^{2}(3-1)! = (-1)^{2}(3-$