Equation of Circle: $(x - h)^2 + (y - k)^2 = r^2$

1. Identify the center and the radius of the circle. Then sketch the graph

$$(x-2)^2 + (y-4)^2 = 1$$

Center:	Radius	

Center: Radius

2. Write the equation of the circle in standard form, given the graph below:

Center

Radius:

Circle Equation:

Center_____ Radius: _____

Circle Equation:

- 3. Write the equation of the circle in standard form given that center: (4, -8) Radius: 3
- 4. The equation of the circle is $(x-1)^2 + (y+5)^2 = 25$. Tell whether each point is on the circle, in the interior of the circle, or in the exterior of the circle:
 - (a) (1,0)

b) (-3, -1)

5. Write the below equation in standard form. Then identify the center and the radius of the circle:

$$x^2 + y^2 - 24x - 16y + 204 = 0$$

Standard form:		
Center:		
Radius:	<u>.</u>	

Write the standard form of the equation of the line described.

Steps: 1) find slope of the given line 2) plug in point and slope into slope-intercept form, y = mx + b and solve for b

- 3) Write final equation in slope-intercept form (y = mx + b). Leave x and y as variables, replacing only m and b
- 6. through: (-2, 10), perpendicular to y = 3x 3
- 7. through: (1, -5), parallel to $y = -\frac{1}{5}x 2$

Partitioning Line Segments

Steps: 1) rewrite ratio as a fraction 2) Label points and find Δx ($x_2 - x_1$) and Δy ($y_2 - y_1$) 3) Find location of new ordered pair: X-coordinate: $ratio \times \Delta x + x_1$ Y-coordinate: $ratio \times \Delta y + y_1$

8. Given the points A(-2, 4) and B(7, -2), find the coordinates of the point P on directed line segment \overline{AB} that partitions \overline{AB} in the ratio 1:2.

9. Find the coordinates of point P that lies on the line segment \overline{MQ} , M(-9, -5), Q(3, 5), and partitions the segment at a ratio of 2 to 5

1. Identify the center and the radius of the circle. Then sketch the graph

$$(x+2)^2 + (y-4)^2 = 1$$

Center:
$$(-2, 4)$$
 Radius

Center: $(3-3)_{\text{Radius}}$

2. Write the equation of the circle in standard form, given the graph below:

Circle Equation: $(x-4)^2 + (q+4)^2 = 1$

Center (-2,4) Radius: $\frac{3}{2}$

Circle Equation: $(x+2)^2 + (y-4)^2 = 9$

3. Write the equation of the circle in standard form given that center: (4, -8) Radius: 3

$$(x-4)^2 + (y+8)^2 = 9$$

- 4. The equation of the circle is $(x-1)^2 + (y+5)^2 = 25$. Tell whether each point is on the circle, in the interior of the circle, or in the exterior of the circle:
 - a) (1,0) $(1-1)^{2}+(0+5)^{2}=25$ on the circle

b) (-3,-1)

$$(-3-1)^{2} + (-1+5)^{2}$$
 outside circle
 $4^{2} + 4^{2} = 32 > 25$

Standard form:

$$(x-12)^2+(y-8)^2=4$$

Center: (12,8) Radius: 2

Write the standard form of the equation of the line described.

6. through: (-2, 10), perpendicular to
$$y = 3x - 3$$
 $m_1 = 3$ $m_2 = \frac{1}{3}$ $y = mx + b$ $10 = \frac{1}{3}(-2) + b$ $28 = b$ $y = 3x + 28$

7. through: (1,-5), parallel to
$$y = -\frac{1}{5}x - 2$$
 $m_1 = -\frac{1}{5}$

$$y = mx + 5$$

$$-5 = -\frac{1}{5}(1) + 5$$

$$b = -24/5$$

$$y = -\frac{1}{5}x - \frac{24}{5}$$

8. Given the points A(-2, 4) and B(7, -2), find the coordinates of the point P on directed line segment ratio= = \overline{AB} that partitions \overline{AB} in the ratio 1:2.

$$\Delta X = 7 - (-2) = 9$$

$$\Delta y = -2 - 4 = -6$$

$$X - coord : \frac{1}{3}(9) + -2 = 1$$

$$Y - coord : \frac{1}{3}(-6) + 4 = 2$$

9. Find the coordinates of point P that lies on the line segment \overline{MQ} , M(-9, -5), Q(3, 5), and partitions the segment at a ratio of 2 to 5 $ratio = \frac{2}{2}$

$$\Delta x = 3 - (-9) = 12$$

$$\Delta y = 5 - (-5) = 10$$

$$x - coord: \frac{2}{7}(12) - 1 = \frac{-39}{7}$$

$$y - coord: \frac{2}{7}(10) - 5 = \frac{-15}{7}$$

$$\left[P\left(-\frac{39}{7}, -\frac{15}{7}\right)\right]$$