Steps for Solving by Completing the Square method

- 1. Arrange terms in standard form : $ax^2 + bx + c = 0$
- 2. "a" value MUST be equal to 1, so divide each term by the GCF to make a = 1
- 3. Move constant to the other side of the equation and add spaces to each side

$$x^2 + bx + \underline{\hspace{1cm}} = c + \underline{\hspace{1cm}}$$

- 4. Find $\left(\frac{b}{2}\right)^2$ and enter this value into the blank spaces ____ on both sides of the equation
- 5. Rewrite left side in factored form and add the numbers on the right side
- 6. take the $\sqrt{}$ of both sides (don't forget \pm)
- 7. solve for x

Solve the quadratic equations below using complete the square method:

1.
$$x^2 - 8x - 16 = 3$$

2.
$$4x^2 - 16x - 27 = 1$$

3.
$$2x^2 - 8x = 32$$

4.
$$5x^2 - 30x - 5$$

- Arrange terms in standard form: $ax^2 + bx + c = 0$
- "a" value MUST be equal to 1, so divide each term by the GCF to make a = 1 Move constant to the other side of the equation and add spaces to each side

$$x^2 + bx + \underline{\hspace{1cm}} = c + \underline{\hspace{1cm}}$$

- 4. Find $\left(\frac{b}{2}\right)^2$ and enter this value into the blank spaces ____ on both sides of the equation
- 5. Rewrite left side in factored form and add the numbers-on the right side
- 6. take the $\sqrt{}$ of both sides (don't forget \pm)
- 7. solve for x

5.
$$4x^2 - 24x - 3 = 1$$

6.
$$6x^2 - 12x - 41 = 1$$

7.
$$x^2 - 4x - 12 = 2$$

8.
$$3x^2 - 36x - 7 = -1$$

Complete the Square Practice

Monday Sept 21, 2015

Steps for Solving by Completing the Square method

- 1. Arrange terms in standard form: $ax^2 + bx + c = 0$
- 2. "a" value MUST be equal to 1, so divide each term by the GCF to make a = 1
- 3. Move constant to the other side of the equation and add spaces to each side

$$x^2 + bx + \underline{\qquad} = c + \underline{\qquad}$$

- 4. Find $\left(\frac{b}{2}\right)^2$ and enter this value into the blank spaces ____ on both sides of the equation
- 5. Rewrite left side in factored form and add the numbers on the right side
- 6. take the $\sqrt{}$ of both sides (don't forget \pm)

1.
$$x^{2}-8x-16=3$$
 $x^{2}-8x-19=0$ 2. $4x^{2}-16x-27=1$ 4
$$x^{2}-8x+16=19+16$$
 $(\frac{8}{2})^{2}=4=16$ $x^{2}-4x-7=0$

$$(x-4)^{2}=35$$
 $(x-4)^{2}=35$ $(x-2)^{2}=16$

$$X-4 = \pm \sqrt{35}$$

$$X = 4 \pm \sqrt{35}$$

3.
$$2x^{2}-8x=32$$
 $2x^{2}-8x-32=9$
 $x^{2}-4x-16=0$ $(-\frac{4}{2})^{2}=4$
 $(x-2)^{2}=120$

$$X-2=\pm\sqrt{20}$$

$$X=2\pm\sqrt{20}$$

$$2\pm2\sqrt{5}$$

7. solve for x

Solve the quadratic equations below using complete the square method:

1.
$$x^2 - 8x - 16 = 3$$
 $x^2 - 8x - 19 = 0$

2. $4x^2 - 16x - 28 = 0$

2. $4x^2 - 16x - 27 = 1$

3. $4x^2 - 16x - 27 = 1$

4. $4x^2 - 16x - 27 = 1$

5. $4x^2 - 16x - 27 = 1$

7. $4x^2 - 16x - 27 = 1$

8. $4x^2 - 16x - 27 = 1$

8. $4x^2 - 16x - 27 = 1$

9. $4x^2 - 16x - 27 = 1$

9. $4x^2 - 16x - 27 = 1$

10. $4x^2 - 16x - 27 = 1$

11. $4x^2 - 16x - 27 = 1$

12. $4x^2 - 16x - 27 = 1$

13. $4x^2 - 16x - 27 = 1$

14. $4x^2 - 16x - 27 = 1$

15. $4x^2 - 16x - 27 = 1$

16. $4x^2 - 16x - 27 = 1$

17. $4x^2 - 16x - 27 = 1$

18. $4x^2 - 16x - 27 = 1$

19. $4x^2 - 16x - 27 = 1$

19. $4x^2 - 16x - 27 = 1$

10. $4x^2 - 16x - 27 = 1$

10. $4x^2 - 16x - 27 = 1$

11. $4x^2 - 16x - 27 = 1$

12. $4x^2 - 16x - 27 = 1$

13. $4x^2 - 16x - 27 = 1$

14. $4x^2 - 16x - 27 = 1$

17. $4x^2 - 16x - 27 = 1$

18. $4x^2 - 16x - 27 = 1$

19. $4x^2 - 16x - 27 = 1$

19. $4x^2 - 16x - 27 = 1$

10. $4x^2 - 16x - 27 = 1$

10. $4x^2 - 16x - 27 = 1$

11. $4x^2 - 16x - 27 = 1$

11. $4x^2 - 16x - 27 = 1$

12. $4x^2 - 16x - 27 = 1$

12. $4x^2 - 16x - 27 = 1$

13. $4x^2 - 16x - 27 = 1$

14. $4x^2 - 16x - 27 = 1$

15. $4x^2 - 16x - 27 = 1$

17. $4x^2 - 16x - 27 = 1$

18. $4x^2 - 16x - 27 = 1$

19. $4x^2 - 16x - 27 = 1$

10. $4x^2 - 16x - 27 = 1$

10. $4x^2 - 16x - 27 = 1$

11. $4x^2 - 16x - 27 = 1$

12. $4x^2 - 16x - 27 = 1$

13. $4x^2 - 16x - 27 = 1$

14. $4x^2 - 16x - 27 = 1$

15. $4x^2 - 16x - 27 = 1$

17. $4x^2 - 16x - 27 = 1$

18. $4x^2 - 16x - 27 = 1$

19. $4x^2 - 16x - 27 = 1$

19. $4x^2 - 16x - 27 = 1$

10. $4x^2 - 16x - 27 = 1$

11. $4x^2 - 16x - 27 = 1$

12. $4x^2 - 16x - 27$

x= 3+1/10

- 1. Arrange terms in standard form: $ax^2 + bx + c = 0$
- 2. "a" value MUST be equal to 1, so divide each term by the GCF to make a = 1
- 3. Move constant to the other side of the equation and add spaces to each side

$$x^2 + bx + \underline{\hspace{1cm}} = c + \underline{\hspace{1cm}}$$

- 4. Find $\left(\frac{b}{2}\right)^2$ and enter this value into the blank spaces ____ on both sides of the equation
- 5.-Rewrite left side in factored form and add the numbers on the right side
- 6. take the $\sqrt{}$ of both sides (don't forget \pm)
- 7. solve for x

$$(x-3)^{2} = 10$$

$$x-3 = \pm \sqrt{10}$$

$$x = 3 \pm \sqrt{10}$$

$$x = 3 \pm \sqrt{10}$$

$$x = 3 \pm \sqrt{10}$$

$$x^{2} - 4x - 12 = 2$$

$$x^{2} - 4x - 14 = 0$$

$$x^{2} - 4x \pm 4 = 14 + 4$$

$$(x-2)^{2} = 18$$

$$x = 2 \pm \sqrt{18}$$

8)
8.
$$3x^2-36x-7=-1$$
 $\left(\frac{12}{2}\right)^2=6^2=36$
 $\frac{3x^2-36x-6=0}{3}$
 $x^2-12x-2=0$
 $x^2-12x+36=2+36$
 $(x-6)^2=788$
 $x=6\pm\sqrt{38}$