1)

Given the differential equation $\frac{dy}{dx} = -\frac{2x}{y^2}$, find the particular solution, y = f(x), with the initial condition f(-1) = 3.

A)
$$y = \sqrt{-2x + 3}$$

B)
$$y = \sqrt[3]{-3x^2 + 30}$$

, ,

C)
$$y = \sqrt[3]{-3x^2 + 24}$$

$$D) y = \sqrt{-2x + 7}$$

E)
$$y = \sqrt{-3x^2 - 10}$$

6.3/6.2 Solving Differential Equations Formative Check-in Name: ______Period:____

1)

Given the differential equation $\frac{dy}{dx} = -\frac{2x}{y^2}$, find the particular solution, y = f(x), with the initial condition f(-1) = 3.

$$A) y = \sqrt{-2x + 3}$$

B)
$$y = \sqrt[3]{-3x^2 + 30}$$

C)
$$y = \sqrt[3]{-3x^2 + 24}$$

$$D) y = \sqrt{-2x + 7}$$

$$E) y = \sqrt{-3x^2 - 10}$$

2) Given the differential equation $\frac{y'}{3-x}=6y$, find the particular solution, y=f(x), with the initial condition f(0)=2

A)
$$y = \sqrt{-\frac{3}{2}x^2 + x + 2}$$

B)
$$y = \sqrt{-3x^2 + 36x + 4}$$

C)
$$y = \ln|18x - 3x^2| + 2$$

$$D) \ y = e^{18x - 3x^2} + 2$$

$$E) y = 2e^{18x - 3x^2}$$

2) Given the differential equation $\frac{y'}{3-x}=6y$, find the particular solution, y=f(x), with the initial condition f(0)=2

A)
$$y = \sqrt{-\frac{3}{2}x^2 + x + 2}$$

B)
$$y = \sqrt{-3x^2 + 36x + 4}$$

C)
$$y = \ln|18x - 3x^2| + 2$$

$$D) \ y = e^{18x - 3x^2} + 2$$

$$E) y = 2e^{18x - 3x^2}$$

1)

Given the differential equation $\frac{dy}{dx} = -\frac{2x}{y^2}$, find the particular solution, y = f(x), with the initial condition f(-1) = 3.

11 A)
$$y = \sqrt{-2x + 3}$$

5 B) $y = \sqrt[3]{-3x^2 + 30}$
4 C) $y = \sqrt[3]{-3x^2 + 24}$
11 D) $y = \sqrt{-2x + 7}$
2 E) $y = \sqrt{-3x^2 - 10}$
 $y^2 dy = -2 \times dx$
 $\int u^2 dy = \int 2x dx$

$$\frac{y^{3}}{3} = \frac{-2x^{2}}{2} + C \qquad \left[\frac{y^{3}}{3} = -x^{2} + 10 \right]$$

$$\frac{(3)^{3}}{3} = \frac{-2(-1)^{2}}{2} + C \qquad \left[\frac{y^{3}}{3} = -x^{2} + 10 \right]$$

$$9 = -1 + C \qquad y^{3} = -3x^{2} + 30$$

$$10 = C \qquad \left[y = \sqrt[3]{-3x^{2} + 30} \right]$$

articular solution,
$$y = f(x)$$

 $\frac{4^3}{3} = -x^2 + 10$
 $\frac{4^3}{3} = -x^2 + 10$
 $\frac{4^3}{3} = -x^2 + 10$
 $\frac{4^3}{3} = -x^2 + 10$

<u>6.3/6.2 Solving Differential Equations Formative Check-in</u> Name:

Period:

1)

Given the differential equation $\frac{dy}{dx} = -\frac{2x}{y^2}$, find the particular solution, y = f(x), with the initial condition f(-1) = 3.

$$A) y = \sqrt{-2x + 3}$$

B)
$$y = \sqrt[3]{-3x^2 + 30}$$

C)
$$y = \sqrt[3]{-3x^2 + 24}$$

$$D) y = \sqrt{-2x + 7}$$

E)
$$y = \sqrt{-3x^2 - 10}$$

2) Given the differential equation $\frac{y'}{3-x} = 6y$, find the particular solution, y = f(x), with the initial condition f(0) = 2

$$\begin{array}{c}
2 \mid A) \ y = \sqrt{\frac{3}{2}x^2 + x + 2} \\
2 \mid B) \ y = \sqrt{-3x^2 + 36x + 4} \\
1 \mid C) \ y = \ln|18x - 3x^2| + 2 \\
4 \mid D) \ y = e^{18x - 3x^2} + 2 \\
5 \mid E) y = 2e^{18x - 3x^2} \\
y' = 6y (3 - x) \\
4y = 6y (3 - x)
\end{array}$$

$$\frac{dy}{dy} = 6y(3-x)dx \qquad |y| = e^{18}$$

$$\frac{dy}{y} = 6(3-x)dx \qquad |y| = e^{18}$$

$$\int \frac{1}{y}dy = \int 18-6xdx \qquad |y| = Ce^{1}$$

$$\ln|y| = 18x - 6x^{2} + C \qquad 2 = Ce^{0}$$

$$\ln|y| = 18x - 3x^{2} + C \qquad 2 = C$$

$$e^{\ln|y|} = e^{18x - 3x^{2} + C} \qquad y = 2e^{1}$$

$$|y| = e^{18x-3x^2} c$$

$$|y| = e^{18x-3x^2} C$$

$$|y| = (e^{18x-3x^2}) (0.2)$$

$$y = (e^{18x-3x^2}) (0.2)$$

2) Given the differential equation $\frac{y'}{3-x}=6y$, find the particular solution, y=f(x), with the initial condition f(0)=2

A)
$$y = \sqrt{-\frac{3}{2}x^2 + x + 2}$$

$$B) y = \sqrt{-3x^2 + 36x + 4}$$

C)
$$y = \ln|18x - 3x^2| + 2$$

$$D) y = e^{18x - 3x^2} + 2$$

$$E) y = 2e^{18x - 3x^2}$$

	100	D:CC	F	F 4.2	Check Part 2	A I
h 4	/h /	Hitterential	Fallations	FORMATIVE	I NACK PART /	Mame
U.J	,	Differential	Lquations	1 Offillative	CHCCK I GILL	Number

_Period:___

1)

Given the differential equation $\frac{dy}{dx} = \frac{2x-1}{y}$, find the particular solution, y = f(x), with the initial condition f(-3) = 6.

63	/6.2 Differential Equ	uations Formative	Check Part 2	Name:
U.J	0.2 Differential Ly	uations i officiative	CHECK Fait 2	Maine.

_Period:___

1)

Given the differential equation $\frac{dy}{dx}=\frac{2x-1}{y}$, find the particular solution, y=f(x), with the initial condition f(-3)=6.

What is the particular solution to the differential equation $\frac{dy}{dx}=x^2y$ with the initial condition y(3)=e?

2)

What is the particular solution to the differential equation $rac{dy}{dx}=x^2y$ with the initial condition y(3)=e?

5.3	/6.2 Differential E	Equations	Formative	Check Part 2	Name:
					-

Period:

1)

Given the differential equation $\frac{dy}{dx} = \frac{2x-1}{y}$, find the particular solution, y = f(x), with the initial condition f(-3) = 6.

6.3/6.2 Differential Equations Formative Check Part 2 Name:

1)

Given the differential equation $\frac{dy}{dx} = \frac{2x-1}{y}$, find the particular solution, y = f(x), with the initial condition f(-3) = 6.

$$ydy = 2x - 1dx$$

$$\int y \, dy = \int 2x - 1 \, dx$$

$$\frac{y^2}{2} = \frac{2x^2}{2} - |x + c|$$

$$\frac{4^{2}}{2} = x^{2} - x + C$$

$$\frac{6^2}{3} = (-3)^2 - (-3) + C$$

$$\frac{4^2}{2} = x^2 - x + C$$

$$\frac{6^{2}}{2} = (-3)^{2} - (-3) + C$$

$$18 = 9 + 3 + C$$

$$18 = 12 + C$$

$$18 = 12 + C$$

$$18 = 2^{2} - 2^{2} - 2^{2} + C$$

$$y^2 = 2x^2 - 2x + 12$$

$$y = \sqrt{2x^2 - 2x + 12}$$

What is the particular solution to the differential equation $\frac{dy}{dx}=x^2y$ with the initial condition y(3)=e?

Key

2)

What is the particular solution to the differential equation $\frac{dy}{dx} = x^2y$ with the initial condition y(3) = e?

$$\frac{dy}{dx} = \frac{x^2y}{1}$$

$$dy = x^2y dx$$

$$dy = x^2dx$$

$$\frac{dy}{y} = x^2dx$$

$$||y|| = \frac{x^{3}}{3} + C$$

$$||y|| = e^{x^{3}/3} + C$$

$$||y|| = e^{x^{3}/3} \cdot e^{c}$$

$$||y|| = e^{x^{3}/3} \cdot C$$

$$||y|| = (e^{x^{3}/3})$$

$$||y|| = (e^{x^{3}/3})$$

$$y = Ce^{\frac{x^{3}/3}{3}}$$
 $e = Ce^{\frac{3^{3}/3}{3}}$
 $e = Ce^{\frac{3^{3}/3}{2}}$
 $e = Ce^{\frac{9}{2}}$
 $y = \frac{1}{e^{8}} \cdot e^{\frac{3^{3}/3}{3}}$
 $y = e^{\frac{1}{2}} \cdot e^{\frac{3^{3}/3}{3}}$

6.3/6.2 Solving Differential Equations Mini WS #3 Name:	Period:
1. Given the differential equation, $ww'=t^2sec^2(2t^3)$, find the particular condition $w(0)=-4$.	icular solution , $w = f(t)$, with the initial

6.3/6.2 Solving Differential Equations Mini WS #3 Name: _____Period:____

1. Given the differential equation, $ww' = t^2 sec^2(2t^3)$, find the particular solution, w = f(t), with the initial condition w(0) = -4.

2. Given the differential equation, y'xlnx - y = 0, find the particular solution , y = f(x), with the initial condition f(e) = e

2. Given the differential equation, y'xlnx - y = 0, find the particular solution, y = f(x), with the initial condition f(e) = e

5.3	6.2 Solving Differential Equ	ations Mini WS #3	Name:

Key

1. Given the differential equation, $ww'=t^2sec^2(2t^3)$, find the particular solution, w=f(t), with the initial condition w(0) = -4.

$$\frac{W \cdot dw}{dt} = \frac{t^2 \sec^2(2t^3)}{1}$$

wdw = t2sec2 (2t3)dt

$$\int wdw = \int t^2 \sec^2(2t^3) dt$$

$$u = 2t^3 dt = \frac{du}{6t^2}$$

$$\frac{du}{dt} = 6t^2$$

$$= \int t^2 \cdot \sec^2 u \cdot \frac{du}{6t^2}$$

$$\int wdw = \iint sec^2udu$$

 $\frac{w^2}{2} = \frac{1}{2} t a n u + C$

$$\frac{w^{2}}{2} = \frac{1}{6} \tan(2t^{3}) + C \int_{-\infty}^{\infty} e^{-t} dt dt = \frac{1}{6} \tan(2t^{3}) + C$$

$$\left(\frac{-4}{2}\right)^2 = \frac{1}{6} \tan \left(2(0)^3\right) + C$$

$$\left| \left(\frac{w^2}{2} = \frac{1}{6} \tan \left(2t^3 \right) + 8 \right) \right| 2$$

$$W^2 = \frac{2}{6} \tan(2t^3) + 16$$

	/C 2 Cabring Differential	Fauntions	Mini M/S #2	Name.
6.3	6.2 Solving Differential	Equations	IVIIIII VV3 #3	ivaille.

Period:_

^{1.} Given the differential equation, $ww' = t^2 sec^2(2t^3)$, find the particular solution, w = f(t), with the initial condition w(0) = -4.

2. Given the differential equation, y'xlnx - y = 0, find the particular solution, y = f(x), with the initial condition f(e) = e

Key

$$\frac{dy \times ln \times}{dx} = \frac{y}{1}$$

$$\frac{dy}{y} = \int \frac{x du}{x \cdot u} \rightarrow \int \frac{u}{u} du$$

$$y = C \ln x \cdot (e, e)$$

$$\frac{dy}{y} = \frac{dx}{x \ln x}$$

$$\ln |y| = \ln |u| + C$$

$$e = C \ln e$$

$$e = C(1)$$

$$e = C$$

$$e \ln |y| = \ln |\ln x| + C$$

$$e \ln |y| = \ln |\ln x| + C$$

$$y = e \ln x$$

2. Given the differential equation, y'xlnx - y = 0, find the particular solution , y = f(x), with the initial condition f(e) = e