Essential Question How do you divide radicals?

The Quotient Property of Radicals states that \_\_\_\_\_

If there is a radical in the denominator, you must \_\_\_\_\_\_.

Example: Simplify.

a. 
$$\sqrt{\frac{4}{9}}$$

b. 
$$\sqrt{\frac{16}{3}}$$

c. 
$$\frac{5}{\sqrt{18}}$$

d. 
$$\frac{2}{\sqrt{32}}$$

e. 
$$\frac{4}{\sqrt{8}}$$

f. 
$$\sqrt{\frac{6}{12}}$$

g. 
$$\frac{2\sqrt{12}}{6\sqrt{8}}$$

h. 
$$\frac{8\sqrt{8}}{2\sqrt{24}}$$

$$i. \frac{\sqrt{18}}{6\sqrt{20}}$$

## Geometry © 2015 Kuta Software Dividing Radicals

Simplify...

$$1) \ \frac{4\sqrt{5}}{\sqrt{3}}$$

$$2) \ \frac{\sqrt{9}}{2\sqrt{6}}$$

3) 
$$\frac{3}{\sqrt{5}}$$

4) 
$$\frac{\sqrt{4}}{5\sqrt{12}}$$

5) 
$$\frac{\sqrt{4}}{\sqrt{5}}$$

6) 
$$\frac{4}{\sqrt{5}}$$

7) 
$$\frac{2\sqrt{15}}{\sqrt{10}}$$

8) 
$$\frac{\sqrt{3}}{2\sqrt{5}}$$

9) 
$$\frac{\sqrt{2}}{\sqrt{5}}$$

$$10) \ \frac{\sqrt{6}}{\sqrt{10}}$$

## Geometry Notes: Dividing Radicals



Essential Question How do you divide radicals?

The Quotient Property of Radicals states that  $\frac{17}{17} \sqrt{a}$  and  $\sqrt{b}$  are real numbers, then  $\frac{\sqrt{a}}{\sqrt{17}} = \sqrt{\frac{a}{17}}$ If there is a radical in the denominator, you must <u>rationalize</u> denominator

Example: Simplify.

a. 
$$\sqrt{\frac{4}{9}} = \frac{2}{3}$$

b. 
$$\sqrt{\frac{16}{3}}$$
  $\frac{4}{\sqrt{3}}$   $\frac{13}{\sqrt{5}}$ 

c. 
$$\frac{5}{\sqrt{18}} = \frac{5}{\sqrt{9.2}} = \frac{5}{3\sqrt{2}}$$

d. 
$$\frac{2}{\sqrt{32}}$$
  $\sqrt{\frac{2}{16-2}}$ 

$$\frac{2}{4\sqrt{2}} \cdot \sqrt{\frac{2}{2}} = \frac{2\sqrt{2}}{4\cdot 2}$$

$$e.\frac{4}{\sqrt{8}} = \frac{4}{2\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$$

$$e.\frac{4}{\sqrt{8}} = \frac{4}{2\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$$
 $f.\sqrt{\frac{6}{12}} = \sqrt{\frac{2}{2}} = \sqrt{\frac{2}{2}} = \sqrt{\frac{2}{2}}$ 

g. 
$$\frac{2\sqrt{12}}{6\sqrt{8}}$$
  $\frac{2}{6}$   $\sqrt{\frac{3}{2}}$ 

$$h. \frac{8\sqrt{8}}{2\sqrt{24}} \qquad 4\sqrt{\frac{3}{3}}$$

i. 
$$\frac{\sqrt{18}}{6\sqrt{20}}$$
  $\frac{1}{6}$ 

$$\frac{\sqrt{10}}{2 \cdot 10} = \frac{\sqrt{10}}{20}$$

## \* cannot cancelfeduce inside with outside

Geometry

© 2015 Kuta Software LLC. All rights reserved.

## **Dividing Radicals**

Simplify.

simplify.

1) 
$$\frac{4\sqrt{5}}{\sqrt{3}}$$
  $\frac{\sqrt{3}}{\sqrt{3}}$   $\frac{4\sqrt{15}}{3}$   $\frac{4\sqrt{15}}{3}$ 

3) 
$$\frac{3}{\sqrt{5}}$$
  $\frac{3\sqrt{5}}{5}$  =  $\boxed{3\sqrt{5}}$ 

5) 
$$\frac{\sqrt{4}}{\sqrt{5}}$$
  $\frac{2}{\sqrt{5}}$   $\frac{\sqrt{5}}{\sqrt{5}}$  =  $2\sqrt{5}$   $\frac{2\sqrt{5}}{5}$ 

7) 
$$\frac{2\sqrt{15}}{\sqrt{10}}$$
 5  $2\frac{\sqrt{3}}{\sqrt{2}}$   $\sqrt{2}$   $\sqrt{6}$   $2\frac{\sqrt{6}}{2}$   $\sqrt{6}$ 

9) 
$$\frac{\sqrt{2}}{\sqrt{5}}$$
  $\frac{\sqrt{5}}{\sqrt{5}}$  =  $\left[\frac{\sqrt{10}}{5}\right]$ 

2) 
$$\frac{\sqrt{9}}{2\sqrt{6}}$$
  $\frac{1}{2}\frac{3}{\sqrt{6}}\frac{3}{\sqrt{6}} = \frac{3\sqrt{6}}{2\cdot 6} = \frac{3\sqrt{6}}{12}$   $\frac{\sqrt{6}}{4}$ 

4) 
$$\frac{\sqrt{4}}{5\sqrt{12}}$$
  $\frac{1}{5\sqrt{3}}$   $\frac{1}{5\sqrt$ 

$$6) \frac{4}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} = 4\sqrt{5}$$

$$\frac{4\sqrt{5}}{5}$$

8) 
$$\frac{\sqrt{3}}{2\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{15}}{10}$$