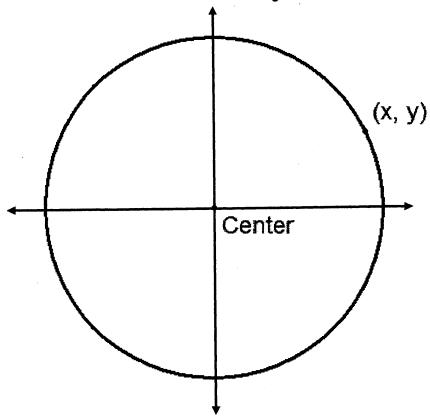
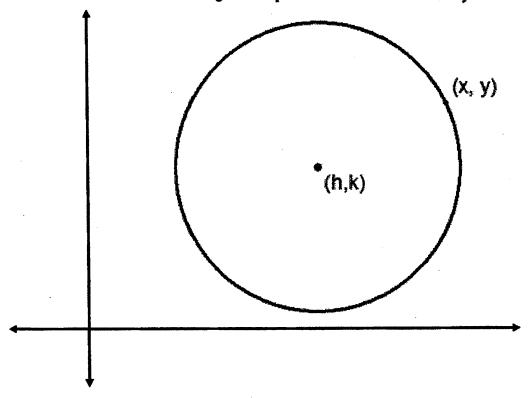

Part 1: Finding the Radius


Consider the circle below. Notice the center is at the origin and a point is on the circle (x, y).

- 1. Construct a line segment from the center to the point (x, y) on the circle and label it "r". What is this line segment called?
- 2. Construct a right triangle with r as the hypotenuse. What are the coordinates of the point (x, y)?
- 3. What is the measure of r? Explain your method for calculating it.

Part 2: Circles Centered at the Origin.


Consider the circle below. The center is located at the origin.

- 1. Construct a radius from the center to the point (x, y). Label it "r".
- 2. Construct a right triangle with r as the hypotenuse. What are the coordinates of the point where the legs meet?
- 3. Write an expression for the distance from the center to the point from #2. Label the triangle accordingly.
- 4. Write an expression for the distance from (x, y) to the point from #2. Label the triangle accordingly.
- 5. Now use your method from part one to write an expression for r^2

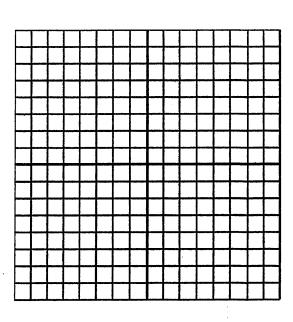
Part 3: Circles centered anywhere!

In the previous section, you found that $x^2 + y^2 = r^2$. This is the general equation for a circle centered at the origin. However, circles are not always centered at the origin. Use the following circle and directions to find the general equation for a circle centered anywhere.

- 1. Construct a radius between (h, k) and (x, y). Then create a right triangle with the radius as the hypotenuse. Find the coordinates for the point where the legs meet.
- 2. Write an expression for the distance between (x, y) and the point from #1. Label the triangle.
- 3. Write an expression for the distance between (h, k) and the point from #1. Label the triangle.
- 4. Now write an expression for r^2 .

$$(x-h)^2 + (y-k)^2 = r^2$$

r =


(h,k) =

(x,y)

Ex 1: Write the standard equation of a circle with center (-3,6) and a radius of 7.

Ex 2: Write the standard equation of a circle with center (-5,0) and a radius of 4.8.

Ex 3: State the center and radius of $(x+2)^2 + (y-3)^2 = 4$. Graph the circle.

Part 1: Finding the Radius

Consider the circle below. Notice the center is at the origin and a point is on the circle (x, y).

1. Construct a line segment from the center to the point (x, y) on the circle and label it "r". What is this line segment called?

2. Construct a right triangle with r as the hypotenuse. What are the coordinates of the point (x, y)?

$$(24)$$

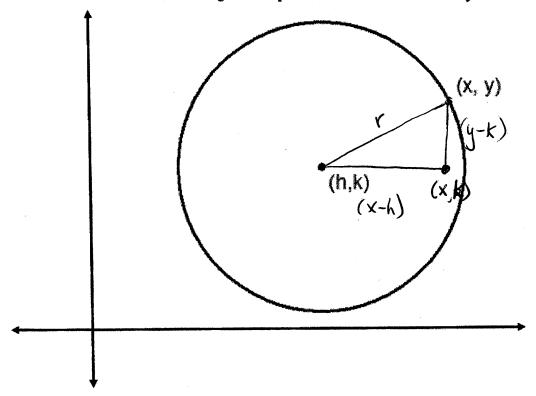

3. What is the measure of r? Explain your method for calculating it.

$$2^{2}+4^{2}=r^{2} \qquad r=\sqrt{20}$$

$$4+16=r^{2} \qquad r=2\sqrt{5}$$

$$20=r^{2} \qquad r=2\sqrt{5}$$

Consider the circle below. The center is located at the origin.


 $x+y=r^2$

- 1. Construct a radius from the center to the point (x, y). Label it "r".
- 2. Construct a right triangle with r as the hypotenuse. What are the coordinates of the point where the legs meet? (x,y)
- 4. Write an expression for the distance from (x, y) to the point from #2. Label the triangle accordingly. $(x-x)^2 + (y-v)^2 = y$
- 5. Now use your method from part one to write an expression for r^2

$$\gamma^2 = (x-0)^2 + (y-0)^2$$

Part 3: Circles centered anywhere!

In the previous section, you found that $x^2 + y^2 = r^2$. This is the general equation for a circle centered at the origin. However, circles are not always centered at the origin. Use the following circle and directions to find the general equation for a circle centered anywhere.

1. Construct a radius between (h, k) and (x, y). Then create a right triangle with the radius as the hypotenuse. Find the coordinates for the point where the legs meet.

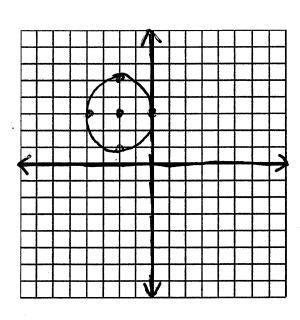
$$(x-h)^2 + (y-k)^2 = r^2$$

- 2. Write an expression for the distance between (x, y) and the point from #1. Label the triangle.
- 3. Write an expression for the distance between (h, k) and the point from #1. Label the triangle.
- 4. Now write an expression for r^2 .

Standard equation of a circle

$$(x-h)^2 + (y-k)^2 = r^2$$

Ex 1: Write the standard equation of a circle with center (-3,6) and a radius of 7.


$$(x+3)^{2}+(y-6)^{2}=7^{2}$$

Ex 2: Write the standard equation of a circle with center (-5,0) and a radius of 4.8.

$$(x+5)^{2}+(y-0)^{2}=4.8^{2}$$

Ex 3: State the center and radius of $(x+2)^2 + (y-3)^2 = 4$. Graph the circle.

Center:
$$(-2,3)$$

r=2

