Recovery Key Course Spring 2016 Angle Bisectors in Triangles Point of Concurrency-Concurrent lines-Circumcan ter Perpendicular Bisectors in Triangles E is equidistant to A and B D is equidistant to A and B +

Centroid Theorem-

//Name	Date	Period
<i>,</i>	Geometry Points of Concurrency Homework	
cribe how each of the points of concurrence for me	cy is found. Be specific!	
incenter for do	ngle bisector	•
Circumcenter POC for	I bisector	
Orthocenter POC Sor	Altitudes	
Point: Altitude	Point:	trold
Int: <u>Circumcenter</u> med by: <u>L bisector</u>		nter Tyle bisector

Important Questions (use your graphic organizer to neip):
1. Which points of concurrency are always inside the triangle?
2. Which point of concurrency is always on the vertex of a right triangle?
3. Which point of concurrency is always on the midpoint of the hypotenuse in a right triangle?
4.) Which points of concurrency are always outside of an obtuse triangle?
5. Which point of concurrency is the center of gravity in a triangle? Centroid
6. Which point of concurrency is equidistant from every vertex?
7. Which point of concurrency is the center of an inscribed circle as shown below?
8. Which point of concurrency is the center of a circumscribed circle as shown below? CIrcumcentar
6 2(6)
Point G is the Centroid of \triangle ABC. AD = 8, AG = 10 and CD = 18) Find the length of the given segment.
-9. BD 8 12+6
10. AB 16
11. EG 5
12. AE 15
13. CG 12 14. DG 6
D is the centroid of \triangle ABC, AE = 12, AD = 10, CF = 12. Find the length of each segment.
15. DG
16. AG 15
17. EC 12

18. AC 24

20. CD ___

19. DF 4

	Na	Name:						Ge	Geometry – Points of Concurrency Worksheet				
7	Cir	ircle the letter with the name of the segment/line/ray shown.											
				(a) (b) (c) (d)		7	or	2.		\	(a) perpendicular bisector (b) angle bisector (c) median (d) altitude		
	3.			(a) (c) (d)			or	4.		>	(a) perpendicular bisector (b) angle bisector (c) median (d) altitude		
									•				
	Cir	cle t	he letter with t	he name	of the	correct poir	nt of con	curt	ency.				
	5.	The	three altitudes	of a tria	ngle i	ntersect at th	ne			. /			
<i></i> :		(a)	circumcenter	_	(b)	incenter		(c)	centroid	(d)	orthocenter		
		Trib.	there are adioma		mala i	ntonnoot ot th					•		
)	(a)	three medians	s or a ura	_	incenter		(c)	centroid	(q) 	orthocenter		
	7	The	three perpend	icular bis	sector	s of a triangl	e interse	ect a	t the		•		
		(a)	circumcenter			incenter			centroid	(d)	orthocenter		
	8.	The	three angle bi	sectors o	fatri:	angle interse	ct at the						
			circumcenter	/		incenter			.centroid	(d)	orthocenter		
			• .	۲.									
	9.	It is	equidistant fro	om the th	ree ve	ertices of the	triangle	: .					
		(a)	circumcenter		(b)	incenter		(c)	centroid	(d)	orthocenter		
	10.	It is	equidistant fro	om the th	ree si	des of the tri	angle.	•					
			circumcenter		,	incenter		(c)	centroid	(d)	orthocenter		
, ,	11.	It di	vides each me	dian into	two s	ections at a 2	2:1 ratio	<u>. </u>					
) :		circumcenter			incenter			centroid	(d)	orthocenter		

Name the point of concurrency shown. 12. 13. 14. centroid incenter circumienten 15. 16. 17. Circumcenter orthocenter incenter 18. 19. 20. incenter circumcenter orthocenter 22. 21. 23. Incenter

Circuments

circumcenter

: Key

Analytic Geometry

Right Triangle Trigonometry Practice

1. What is the value of x? Round your answer to the nearest thousandth.

2. Find the lengths of y and z in the diagram below.

3. What is the measure of ∠P?

$$sin P = \frac{15}{22}$$
 $P = sin (\frac{15}{22})$
 $P = 42.986^{\circ}$

4. What is the value of a and b to the nearest tenth?

5. What is the measure of $\angle A$ to the nearest degree?

6. Suppose △ABC is a right triangle with ∠B the right angle. Explain the relationship between Tangent of angle A and Tangent of angle C.

7. Explain the relationships between the sine and cosine of complementary (the 2 acute angles) angles. (Use triangle ABC above and find sinA and cosC.

$$\sin A = \frac{3}{5} \quad \cos C = \frac{3}{5}$$

Sin A = \frac{3}{5} Cos C = \frac{3}{5} The Adjocent of C is also the opposite of A.

- 8. In right \triangle ACB, AC = 3, BC = 4, and AB = 5. Draw a figure.
 - A. Find the exact value of sin B. $=\frac{3}{5}$

D. Find measurement of $\angle A$ (to the nearest degree). $\underline{\sin A} = \frac{4}{5}$

In \triangle ABC, A β = β cm and BC = 11 cm. Determine the tangent ratio of \angle A, to the nearest thousandth.

9.

$$tan A = \frac{11}{8}$$

Determine the measure of $\angle C$, to the nearest degree.

$$tan C = \left(\frac{3}{8}\right)$$

11.

In the triangle, BC = 12 cm and $Sin D = 0.58\overline{3}$. What is the length of the hypotenuse, to the nearest

$$0.583 = 12$$

$$\frac{X}{1} = \frac{12}{0.583}$$

 $X = 20.583$ cm

A roof is shaped like an isosceles triangle. The slope of the roof makes an angle of 24° with the horizontal, and has an altitude of 3.5 m. Determine the width of the roof, to the nearest thousandth of a meter.

$$\frac{\tan 24}{1} = \frac{3.5}{x}$$

$$\frac{x}{1} = \frac{3.5}{\tan 24} \quad x = 7.861$$

10. In right $\triangle ABC$, $\sin A = \frac{21}{29}$ and angle C is a right angle. Draw a figure. Write all trigonometric ratios as simplified fractions.

ed fractions.
$$O_{\text{pf}} = \frac{21}{20}$$

E)
$$\cos B = \frac{21/29}{20}$$

F)
$$\sin B = \frac{29}{29}$$

$$a^{2}+b^{2}=c^{2}$$

$$21^{2}+b^{2}=28^{2}$$

$$b^{2}=29^{2}-21^{2}$$

$$b^{2}=400$$

$$-6=20$$

G) Find the measure of angle B to the nearest thousandth.

$$SinB = \frac{20}{29}$$

$$B = sin'(\frac{20}{29})$$

$$B = 43.603°$$

$$\frac{5\ln 68}{1} = \frac{x}{24}$$

$$\frac{5/n 68}{1} = \frac{x}{24}$$
 $x = 24 \sin 68$ $x = 22.252 ft$

15. A man that is 5 ½ feet tall walks 175 feet from a building and looks at the highest point on the building. The angle formed by the person's line of sight and the horizontal is 12°. To the nearest foot, how tall is the buildina?

14. A 24 foot ladder leans against a building and makes an angle of 68° with the ground. To the nearest

$$\frac{\tan 12}{1} = \frac{x}{175}$$

$$x = 175 \tan 12$$

$$x = 37.197$$

16. You are building a tent. The rope from the top of the tent pole to the ground measures 5 ft long. The angle of elevation is 68°. x= 4.639ft.

$$\frac{\sin 68}{1} = \frac{\times}{5}$$

A. Find the height of the pole to the nearest thousandth.

B. Find the distance from the base of the pole to the stake to the nearest thousandth.

$$y^2 + 4.639^2 = 5^2$$

 $y^2 = 3.508$

$$y^{2} = 3.508$$
 $(y = 1.873 ft.)$

17. If a 200 foot tree casts a 118 foot shadow, what is the angle of elevation of the sun? Sketch a diagram, set up an equation and solve.

$$\tan \theta = \frac{200}{118}$$

$$0 = 59.459^{\circ}$$

$$6) = 632.36444$$

$$5pead = d = 632.364$$

$$\frac{632.364}{13}$$

18. A plane is flying away from you. Right now, you can see it at an angle of elevation of 56°. Thirteen 2 146.64, seconds later, you can see it an angle of 53°. If you know it's at an altitude of 8,000 feet, how far has i traveled in that time? B) How fast is it traveling? tan 56 8000 tan 53 8000

$$x = \frac{8000}{1} = \frac{y}{tan56}$$
 $x = \frac{9000}{tan53}$
 $x = \frac{5396.068}{4} = \frac{4}{500} = \frac{6008.432}{4}$

Name	Key
Date	Period

It the following questions regarding circle T, identify the part in the diagram.

- 1. A chord
- 2. A diameter
- A central angle <u>LCTD</u> or LDTE
- A radius
- A tangent line
- A minor arc
- A major arc
- A semicircle

For the following circles, find the missing measure or measures

$$m\widehat{AB} = 28^{\circ}$$

$$m\widehat{AB} = 68^{\circ} m\widehat{ADC} = 248^{\circ}$$

$$m\widehat{AC} = 1420$$

Using your knowledge of circles, solve for x. Assume segments appearing to be tangent to the circle are tangents.

Solve for the indicated arc measure or angle.

$$x = 2(67) + 2(80) + 2x = 360$$

$$134 + 160 + 2x = 360$$

$$2x = 66 / x = 33^{\circ}$$

$$m\widehat{X}\widehat{W} = \boxed{70^{\circ}} \angle XZW = \boxed{50^{\circ}}$$

$$m\widehat{Y}\widehat{Z} = \boxed{100^{\circ}} \quad m\widehat{X}\widehat{Y} = \boxed{100^{\circ}}$$

19. If $\overline{CB} \perp \overline{EF}$, CG=2x+10, and GB=4x+2. Wh is the length of \overline{CB} ?

$$8 = 2x$$

$$CB = 2[18] = 36$$

Solve for the indicated arc measure or angle

$$5x+2+3x-8=180$$

 $8x-6=180$
 $8x=186$ $x=23.25$

$$2x(2i) = 28(x+5)$$

$$42x = 28x + 140$$

$$14x = 140$$

$$12^{2} = x(x+18)$$

$$144 = x^{2}+18x$$

$$x^{2}+18x-144=0$$

In Circle D, \angle EDF \cong \angle FDG. Find the indicated measures.

a. Circumference of circle D
$$C = 2\pi r$$

b. Arc length of
$$\widehat{EFG}$$

b. Arc length of
$$\overline{EFG}$$
 $\frac{L}{18\pi} = \frac{160}{360}$ $| 9L = 72\pi$

31. What is the degree measure of an arc of a circle with 4 cm and an arc length of 3 π cm?

$$\frac{L}{2\pi r} = \frac{\widehat{AB}}{360^{\circ}} \left[\begin{array}{c|c} 3\pi & \widehat{AB} \\ 2\pi/4 \end{array} \right] = \frac{\widehat{AB}}{360^{\circ}} \left[\begin{array}{c|c} 8\widehat{AB} = 3(360) \\ \hline 2\pi/4 \end{array} \right] = \frac{\widehat{AB}}{360^{\circ}} \left[\begin{array}{c|c} 8\widehat{AB} = 3(360) \\ \hline \widehat{AB} = 135^{\circ} \end{array} \right]$$

Find the circumference. Leave

32.

$$C = 2\pi r$$
 $C = 2\pi (5.7)$
 $C = 11.4\pi \text{ cm}$

33.

Find the length of AB.

Please answer to the nearest thousandth.

$$\frac{L}{2\pi r} = \frac{AB}{360^5}$$

 $\frac{L}{2\pi r} = \frac{Arc}{3(0)}$

34.

$$\frac{L}{2\pi(14.2)} = \frac{145^{\circ}}{360^{\circ}}$$

$$\frac{L}{28.4\pi} = \frac{29}{72}$$

$$\frac{L}{2s.4\pi} = \frac{29}{72}$$

$$\frac{L}{2\pi(4)} = \frac{121^{\circ}}{360^{\circ}}$$

Find the indicated measure.

$$\frac{L}{C} = \frac{\widehat{AB}}{3\zeta_0}$$

37. Circumference of OQ

38
. Radius of ΘQ

39. Length of
$$\widehat{AB}$$

$$\frac{12}{C} = \frac{85}{360} \left[17C = 324 \right]$$

$$\frac{12}{C} = \frac{17}{27} \left[C = 19058 \right]$$

$$\frac{14.2}{2\pi r} = \frac{132}{360}$$

$$\frac{14.2}{2\pi r} = \frac{11}{30}$$

$$22\pi r = 426$$

$$r = 6.164 in.$$

Find the value of x

12x=6(x+4)

3(3+x)=2(12)

9+3x = 24

3x = 15

$$42. \begin{array}{|c|c|} x+6 \\ \hline 12 & 10 \\ \hline x-1 & \end{array}$$

$$(x-1)(x+6)=10(12)$$

$$x^{2}-1x+6x-6=120$$

 $x^{2}+5x-126=0$

$$15(3x+15)=20(x+2a)^{2}$$

$$45x+225=20x+400$$

$$25x=175$$

$$12x = 6x + 24$$

 $6x = 24$

43.

44.

45.

$$15^{2} = 9(4x+9)$$
 $225 = 36x+81$

46.

$$14(x+2+14) = 16^{2}$$

20=5+X 15 =x

20=5tx

Chapter W Review 2

Key

Quadrilatera: ABCD is inscribed in $\bigodot E$

a) $m\angle A = 100.5$

4x+9+3x+3=180

X=24

Find:

- b) mZD 75
- e) Find m ADC 210
- d) Find m ABC 150°

3. Find por

- r2+ 12= (r+8)2

3. Fill in all arcs and angle measures.

- a. Find m∠VZW 62
- b. Find $m\overline{WX} = 70^{\circ}$
- c. Find $m \widetilde{VY}$
- d. Find m/WYX 35

Find m L 1

$$m21 = \frac{1}{5}(232 - 128)$$

- m \(AEC = \(25 \)

Given circle with centre O, $\overline{WT} = \overline{TY}$ and $\widehat{XWT} = 35$

$$mL1 = \frac{90^{\circ}}{mL2} = \frac{90^{\circ}}{m}$$

No cirde no TT

Key

Find the area of each sector.

Formula $\frac{S}{\pi r^2} = \frac{9}{360}$

$$\frac{S}{\pi(9)^2} = \frac{246}{360}$$

 $\frac{S}{8/\pi} \stackrel{?}{=} \frac{2}{3} \qquad 35 \stackrel{?}{=} \frac{162\pi}{S} = 54\pi \text{ m}$ f each figure. Round your answer

2) 16 yd 105°

$$\frac{S}{\pi(16)^2} = \frac{105}{360}$$

$$\frac{S}{256\pi} = \frac{7}{24}$$

$$S = \frac{224\pi}{3} \text{ yol}^2$$

Prism
$$V = B \cdot h$$

$$A = \frac{1}{2}(9)(3.9) \cdot 10$$

$$V = 175.5 \text{ m}^{3}$$

Find the area of each. Use your calculator's value of π . Round your answer to the nearest tenth.

18) radius = 10.6 cm
$$A = \pi r^{2}$$

$$A = \pi (10.6)^{2}$$

$$A = 112.36 \pi \text{ cm}^{2}$$

$$\approx 353 \text{cm}^{2}$$

Area

Triangle
$$A = \frac{1}{2}bh$$

Rectangle $A = bh$

Circle $A = \pi r^2$

Area of a Sector of a Circle

Cylinder
$$V = \pi r^2 h$$

Pyramid $V = \frac{1}{3} Bh$
Cone $V = \frac{1}{3} \pi r^2 h$
Sphere $V = \frac{4}{3} \pi r^3$

Volume

Area of Sector =
$$\frac{\pi r^2 \theta}{360}$$
 $\frac{S}{\pi r^2} = \frac{S}{360}$

Prism
$$V = Bh$$

1. Identify the center and the radius of the circle. Then sketch the graph

$$(x+2)^2 + (y-4)^2 = 1$$

Radius

$$(x-3)^2 + (y+3)^2 = 4$$

2. Write the equation of the circle in standard form, given the graph below:

Radius:

Center (-2,4)

Circle Equation: $(x+2)^2 + (y-4)^2 = 9$

3. Write the equation of the circle in standard form given that center: (4, -8) Radius: 3

 $(x-4)^2 + (y+8)^2 = 9$

4. The equation of the circle is $(x-1)^2 + (y+5)^2 = 25$. Tell whether each point is on the circle, in the interior of the circle, or in the exterior of the circle:

$$(1-1)^{2}+(0+5)^{2}=25$$

$$4^2 + 4^2 = 32 > 25$$

Standard form:

$$(x-12)^2+(y-8)^2=4$$

Center: (12,8) Radius: 2

Write the standard form of the equation of the line described.

6. through: (-2, 10), perpendicular to
$$y = 3x - 3$$
 $m_1 = 3$ $m_2 = \frac{1}{3}$

$$10 = -\frac{1}{3}(-2) + b$$

$$10 = \frac{1}{3}(-2) + b$$

7. through: (1,-5), parallel to
$$y = -\frac{1}{5}x - 2$$
 $m_1 = \frac{7}{5}$

$$y = mx + 5$$

$$-5 = -\frac{7}{5}(1) + 5$$

$$b = -24/5$$

$$y = -\frac{1}{5}x - \frac{24}{5}$$

8. Given the points A(-2, 4) and B(7, -2), find the coordinates of the point P on directed line segment \overline{AB} that partitions \overline{AB} in the ratio 1:2. $ratio = \frac{1}{3}$

$$\Delta X = 7 - (-2) = 9$$

$$\Delta y = -2 - 4 = -6$$

$$X - coord : \frac{1}{3}(9) + -2 = 1$$

$$Y - coord : \frac{1}{3}(-6) + 4 = 2$$

9. Find the coordinates of point P that lies on the line segment \overline{MQ} , M(-9, -5), Q(3, 5), and partitions the segment at a ratio of 2 to 5 $ratio = \frac{2}{3}$

$$\Delta x = 3 - (-9) = 12$$

$$\Delta y = 5 - (-5) = 10$$

$$x - coord: \frac{2}{7}(12) - 9 = -\frac{39}{7}$$

$$y - coord: \frac{2}{7}(10) - 5 = -\frac{15}{7}$$

$$\left[\begin{array}{c|c} P\left(-\frac{39}{7}, -\frac{15}{7}\right) \end{array}\right]$$

Geometry Completing the Square Review and Circle Equations Worksheet 2

Recall: Circle Equation in Standard Form: $(x - h)^2 + (y - k)^2 = r^2$ Center: (h, k) Radius: r

Write the below equations in standard form, then identify center and radius of circle:

Key

1)
$$x^{2}+y^{2}+14x-22y+150=0$$

 $x^{2}+14x+\frac{49}{9}+y^{2}-22y+\frac{12}{12}=-150+\frac{49}{9}+121$
 $x + 7$
 $x + 7$

$$C:(-7,1)$$
 $r=\sqrt{20}=2\sqrt{5}$

2)
$$x^2 + y^2 - 2x + 16y - 16 = 0$$

$$x^{2}-2x+\frac{1}{1}+y^{2}+16y+64=16+\underline{1}+64$$

$$x - 1 + 8 + 8$$

$$(x-1)^{2}+(y+8)^{2}=81$$

$$C: (1,-8) r=9$$

3)
$$x^2 + y^2 - 4x - 18y + 60 = 0$$

$$x^{2}-4x+4+y^{2}-18y+81=-60+4+81$$

$$x-2$$

$$x-2$$

$$x-3$$

$$x-4$$

$$x-2$$

$$x-3$$

$$x-4$$

$$x-3$$

$$x-3$$

$$x-4$$

$$x-3$$

$$x-4$$

$$x-3$$

$$x-4$$

$$x-3$$

4)
$$x^2 + y^2 - 26x - 16y + 229 = 0$$

$$x^{2}-26x+\frac{169}{14}+y^{2}-16y+64=-229+\frac{169}{169}+64$$

$$x = -13$$

$$(X-13)^{2}+(y-8)^{2}=4$$

$$C:(13.8) = 2$$

5)
$$x^2 + y^2 + 20x + 32y + 351 = 0$$

$$x+20x+10^{3}+y^{2}+32y+38=-351+104256$$
 $x | x | 10$
 $x | x^{2}$
 $x | x^{2}$

6)
$$x^2 + y^2 - 6x + 24y + 128 = 0$$

Quadrilaterals and Polygons REVIEW

Name Key

Date

Period

Solve for x. The figure below is a parallelogram:

1.

$$9x=72$$

$$x=81$$

Solve for x. The figure below is a parallelogram:

3.

$$267+19x-2 = 360$$

 $19x = 95$

$$19x = 95$$

$$X = 5$$

5.

$$-x+19=13$$

$$-x=-6$$

$$\frac{-x=-6}{x=6}$$

Find the length of the base indicated by the trapezoid

Find the measurement of the missing angles indicated for each trapezoid

7.

Find the indicated angle measures:

8.

$$2x = 254$$

 $X = 127$ $m \angle B$ 127

mLD 127

Find the indicated side lengths of the kite below:

9.

$$RH = 4\sqrt{34}$$

10. The perimeter of this kite is **116**. Find x.

RH= 5544

FLYE is a kite with FL = LY. Find w, x, and y.

12. Use distance and slope to verify whether parallelogram below is a rectangle, rhombus, or a square.

13. Find the measure of one interior angle in each polygon. Round your answer to the nearest tenth if necessary.

14. If the sum of the interior angles is 2340°, find the number of sides for the polygon.

$$S=2340$$
 2340=180n=360
 $S=180(n-2)$ $n=15$

16. If each of the interior angles is 135°, find the number of sides for the polygon

angle =
$$\frac{180(n-2)}{n}$$

17. Find the other endpoint of the line segment with the given endpoint and midpoint.

Endpoint: (8, -8), midpoint: (5, 3)

18. Solve for x:

19. In rhombus DLMP, DM = 24, $m \angle LDO = 43^{\circ}$, and DL = 13. Find each of the following.

d)
$$m \angle DML = 43^{\circ}$$

20. Use the following rectangle for parts a and b

$$4y-6=32$$
 $4y=38$ $\left[y=9.5\right]$

a)
$$m \angle 1 = 54^{\circ}$$
, find $m \angle 2$.

b) If
$$XT = 2y - 3$$
 and $US = 32$, solve for y.
 $XT + XT = US$

F 15°

H 65°

G 57°

J 115°

$$16x-13+8x+1=180$$

 $24x-n=180$
 $24x=182$ $X=8$

23.

GE = (5x + 2 and DF = 8x - 7.What is GE?

8x-7=5x+1

$$X=3$$

A 16 B 17 C 18

D 19

GF= 5(3)+2

25.

In trapezoid PQRS, if YX is the midsegment, what could be the lengths of PQ and SR?

F 4 cm and 8 cm

G 9 cm and 15 cm

H 17 cm and 31 cm

J 18 m and 30 m

22.

In kite UVWX, m\(\timesXUV = 84\), and $m\angle WVX = 68^{\circ}$. What is $m\angle VWX$?

136 +136+84+X=?60

F 22°

G 42°

24.

What additional information would allow you to conclude that JKLM is a rhombus?

F JK | ML and JM | KL.

G JM ≅ JK

H \overline{JL} and \overline{MK} bisect each other.

J JL ≅ MK

26.

Which is the best name for the quadrilateral with vertices at (2, 2), (5, -2), (1, -5), and (-2, -1)?

A parallelogram C rhombus

B rectangle

D square/

AB = 3 + 4 = 5 BC=42+32=5

MAB = -4/3

If CDFG is a kite, find each measure.

27.

GF

Find the value of x:

29.

31.

$$17.1 = \frac{1}{2}(2x+8x+3,2)$$

$$17.1 = 5x+1.6$$

$$15.5 = 5x$$

32.

WXYZ is a square. If WT = 3, find each measure

33. a)
$$m \angle WYX = \frac{45^{\circ}}{3}$$

c)
$$m \angle WTZ = \int 0^{\circ}$$

CCGPS Analytic Geometry Probability Test Review 2

1. The math club is electing new officers. There are 4 candidates for president, 5 candidates for vice-president, 2 candidates for secretary, and 1 candidate for treasurer. How many different combinations of officers are possible?

2. A piggybank contains 2 quarters, 3 dimes, 4 nickels, and 5 pennies. One coin is removed at random.

- b) What is the probability that the coin is a dime or a nickel? $\frac{3}{14} + \frac{4}{14} = \frac{7}{14}$ or $\frac{1}{2}$
- c) What is the probability that you choose a nickel **and** then a nickel? (without replacement)
- d) What is the probability that the coin is not a quarter?

- 4 3 = 5
- 3. Each of the letters of the word "ALGEBRA" is on a separate card. The cards have been mixed and placed in a box. If you select one card at random, what is the probability that its letter will be "A"?

4. A card is randomly selected from a standard deck of 52 cards. Find the indicated probability.

Hint: There are 4 jacks, 4 queens, 4 kings, 4 aces, 13 diamonds, 13 spades, 13 clubs, 13 hearts, 36 numbered cards, 26 red cards, and 26 black cards.

a) P(Face card)
$$\frac{12}{52} = \frac{3}{13}$$

c) P(Black and Ace)

looking
$$\frac{2}{52}$$
 or $\frac{1}{26}$ the ovarlap

b) P(Ace or a Diamond)

$$\frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13}$$
Plack part of 52 and 32

d) P(Black card or Face card)

$$\frac{26}{52} + \frac{12}{52} - \frac{6}{52} = \frac{32}{52} \left[\frac{8}{32} \right]$$

5.

b) P(Diamond and Diamond)
$$\frac{13}{52} \cdot \frac{13}{52} \cdot \frac{13}{52} = \boxed{\frac{1}{64}}$$
d) P(Black card and Numbered card)
$$\frac{26}{52} \cdot \frac{36}{52} = \boxed{\frac{9}{26}}$$

6. Two cards are randomly selected from a standard deck of 52 cards (WITHOUT REPLACEMENT). Find the indicated probability. **Hint: There are 4 jacks, 4 queens, 4 kings, 4 aces, 13 diamonds, 13 spades, 13 clubs, 13 hearts, 36 numbered cards, 26 red cards, and 26 black cards.**

Two cards are randomly selected from a standard deck of 52 cards (WITH REPLACEMENT).

Find the indicated probability. **Hint: There are 4 jacks, 4 queens, 4 kings, 4 aces, 13 diamonds,

a) P(Jack of Hearts and Heart)

b) P(Face card and Face card and Ace)

$$\frac{1}{52} \cdot \frac{12}{51} = \boxed{22}$$
d) P(Black Card and Red King)

$$\frac{26}{52} \cdot \frac{2}{51} = \boxed{21}$$
d) P(Black Jack and Numbered card)

$$\frac{26}{52} \cdot \frac{2}{51} = \boxed{21}$$

$$\frac{2}{51} \cdot \frac{36}{51} = \boxed{6}$$

$$\frac{2}{52} \cdot \frac{36}{51} = \boxed{6}$$

$$\frac{2}{221}$$

7. The probability that a student plays tennis is 47%. The probability that a student plays tennis and Lacrosse is 16%. What is the probability that student plays Lacrosse, given that they play tennis?

The probability that a high school senior drives to school is .81. The probability that a high school senior having a job and driving to school is .52. What is the probability that high school senior will have a job, given that they drive to school?

For #9 - 13, refer to the following table.

	Malo	Female	Subtotal	9) P (Male) = $\frac{50}{150} = \frac{1}{3}$				
	Male	remule	Subjuidi	150 3				
Blue Eyes	40	* 20	60					
Green Eyes	10	80	90	10. P (Green Eyes) = $\frac{90}{150} = \frac{3}{5}$				
Subtotal	50	100	150	730 [3]				
		-denomin	atovs.					
11 P/Greer	n Eyes Male			12. P(Male Green Eyes) = $\frac{16}{90}$				
11.1 (01001	12,001,11010			3 7 7				
	10	11/		10 4				
•	- or =							
50 or 5 13) Mala and Grown and Superdent								
50 ° [5] 13) Male and Green eyes are dependent P(M/G) & P(G/M)								
SCALICA LOCAM								
	$P(M(G) \neq \Gamma(G) \cap J$							
				•				

CCGPS Analytic Geometry Probability Test Review 3

- A deli has a lunch special which consists of a sandwich, soup, dessert and drink for \$4.99. They offer the following choices: Sandwich: chicken salad, ham, and tuna, and roast beef Soup: tornato, chicken noodle, vegetable Dessert: cookie and pie Drink: teat coffee, coke, diet coke and sprite. How many lunch specials are there?
 - 4.3.2.5 = 120 lunch combinations
 - 2. In a bag there are 3 red marbles, 2 yellow marbles, and 1 blue 6 to to marble. After a marble is selected, it is replaced. Using this new situation, find the probability of each outcome listed
 - above. a red marble and then a yellow marble a)
 - a blue marble and then a yellow marble $\frac{1}{6}$, $\frac{2}{5}$
 - a red marble and then a blue marble $\frac{3}{2}$.
 - a red marble and then a blue marble $\frac{3}{6}$, $\frac{1}{6}$ $\frac{1}{12}$ any color marble except yellow and then a yellow marble $\frac{2}{6}$, $\frac{2}{6}$
- e) a red marble three times in a row $\frac{3}{6}$, $\frac{3}{6}$, $\frac{3}{6}$ = $\frac{3}{6}$ $\frac{3}{6}$ = $\frac{3}{6}$ $\frac{3}{6}$ = $\frac{3}{6}$
 - 3. In a bag there are 4 red marbles, 2 yellow, and 5 blue marbles. After a marble is selected, it is NOT replaced. Find the probability of each outcome below: 11 + + +
 - a red marble and then a yellow marble
 - a blue marble and then a yellow marble $\frac{5}{11}$, $\frac{2}{12}$ b
 - a red marble and then a blue marble 4, 5 [3/11]
 - any color marble except yellow and then a yellow marble $\frac{9}{17}$
 - a red marble three times in a row $\frac{4}{11}$, $\frac{3}{15}$, $\frac{2}{9}$
 - Each of the letters of the word "GEOMÉTRY" is on a separate card. The cards have been mixed and placed in a box. If you select one card at random, what is the probability that its letter will be "E or a consonant"?

a) P(Face cards or Odd numbered cards)

$$\frac{12}{52} + \frac{16}{52} = \frac{28}{52} = \frac{7}{13}$$

c) P(Red or Face Cards)

$$\frac{26}{52} + \frac{12}{52} - \frac{6}{52}$$

b) P(Face card and Spades)

d) P(Diamonds or even cards)

$$\frac{12}{52} + \frac{20}{52} - \frac{5}{52}$$

- $\frac{26}{52} + \frac{12}{52} \frac{6}{52} \qquad \boxed{\frac{3}{13}}$ Two cards are randomly selected from a standard deck of 52 cards (WITH REPLACEMENT). Find the indicated probability. **Hint: There are 4 jacks, 4 queens, 4 kings, 4 aces, 13 diamonds, 13 spades, 13 clubs, 13 hearts, 36 numbered cards, 26 red cards, and 26 black cards.**
 - a) P(Face cards and Odd numbered cards) b) P(Face card and Spades)

$$\frac{12}{52} \cdot \frac{16}{52}$$

c. P(Red and Face Cards) 26. 12

$$\frac{12}{52} \cdot \frac{13}{52}$$

d) P(even card 3 times)

$$\frac{20}{52}$$
, $\frac{20}{52}$, $\frac{26}{52}$

- 7) Two cards are randomly selected from a standard deck of 52 cards (WITHOUT REPLACEMENT). Find the indicated probability. **Hint: There are 4 jacks, 4 queens, 4 kings, 4 aces, 13 diamonds, 13 spades, 13 clubs, 13 hearts, 36 numbered cards, 26 red cards, and 26 black cards.**
- a. P(Face cards and Odd numbered cards) b) P(Face card and Spades)

$$\frac{12}{52} \cdot \frac{16}{51} = \frac{16}{22}$$

$$\frac{3}{52}$$
, $\frac{12}{51}$ = $\frac{3}{221}$

d) P(even card 3 times)

8) The probability that a student plays tennis is 56%. The probability that a student plays tennis and Lacrosse is 26%. What is the probability that student plays Lacrosse, given that they play tennis?

	Male	Female	Subtotal
Blue Eyes	40	20	60
Green Eyes	10	80	90
Subtotal	50	100	150

10. P (Green Eyes) =
$$\frac{90}{150}$$

11.P(Green Eyes | Female) =
$$\frac{8}{10}$$

12. P(Female | Green Eyes) =
$$\frac{8}{3}$$

13) Dependent b/c P(G/F) + P(F/Green)