Name

Data	

Period

Geometry Multiplying Polynomial Expressions Notes

Let's see the way each of these 3 methods simplifies (x + 3)(2x - 1):

a. FOIL method:

- Multiply each pair of terms that the acronym indicates: First terms, Outer terms, Inner terms, and Last terms.
- Simplify the products.

b. Old fashioned multiplication:

- Line up expressions, make sure to include zero's for missing terms
- Multiply like you did in 3rd grade

c. Box/Grid (Punnett square) method:

- Create a grid with each term of one polynomial listed across the top and each term of the second polynomial listed down one side.
- Fill in each box within the grid by multiplying the row by the column.
- Simplify the products.

From previous study in mathematics, we know that exponents show how many factors are being multiplied.

Example 2: Expand each expression.

a.
$$-3x^4 =$$

c.
$$(5e^{2}f)(-4e^{3}f^{2}) =$$

Reasoning: How is the product of two monomials simplified? Simplify Example 2c.

Example 3: Simplify.

a.
$$5x^2(-3x^3 + x^2 - 7x + 4)$$

b.
$$(-8a^3b)(2a^2 + 3ab - 4ab^2)$$

Example 4: Simplify. a. (3b + 7)(2b + 4)

b.
$$(2y-5)(2y+5)$$

c.
$$(6g - 7)^2$$

d.
$$(8e^3 + 2)(-3e^4 - 1)$$

e.
$$(7m-2)(3m^2+4m-8)$$

f.
$$9w(2w-3) + (8w+5)(3w-4)$$

CCGPS Analytic Geometry Multiplying Polynomial Expressions Notes

Key

Let's see the way each of these 3 methods simplifies (x + 3)(2x - 1):

- a. FOIL method: (Distribute)
 - Multiply each pair of terms that the acronym indicates: First terms, Outer terms, Inner terms, and Last terms.
 - Simplify the products.

$$x(2x-1) + 3(2x-1)$$

$$2x^{2} - x + 6x - 3$$

$$2x^{2} + 5x - 3$$

- b. Old fashioned multiplication:
 - Line up expressions, make sure to include zero's for missing terms
 - Multiply like you did in 3rd grade

$$x+3$$

 $x = 2x-1$
 $-x-3$
 $2x^{3} + 6x = 0$
 $2x^{2} + 5x - 3$

- c. Box/Grid (Punnett square) method:
 - Create a grid with each term of one polynomial listed across the top and each term of the second polynomial listed down one side.
 - Fill in each box within the grid by multiplying the row by the column.
 - Simplify the products.

	2×	-1
X	$2x^2$	-×
3	6X	-3

$$2x^{2} + 5x - 3$$

From previous study in mathematics, we know that exponents show how many factors are being multiplied.

Example 2: Expand each expression.

a.
$$-3x^4 = 3 \cdot x^4$$

b. $2m^3p^2 = 2 \cdot m$
c. $(5y^2x)(-4y^3x^2) = 5 \cdot y^2 \cdot x \cdot -4 \cdot y^3 \cdot x^2$

Reasoning: How is the product of two monomials simplified? Simplify Example 2c.

Example 3: Simplify,
a.
$$5x^2 (-3x^3 + x^2 - 7x + 4)$$

 $-15x^5 + 5x^4 - 35x^3 + 20x^2$

b.
$$(-8a^3b)(2a^2+3ab-4ab^2)$$

- $16a^5b-24a^4b^2+32a^4b^3$

Example 4: Simplify.
a.
$$(3b+7)(2b+4)$$

 $3b(2b+4)+7(2b+4)$
 $6b^2+12b+14b+28$
 $6b^2+2bb+28$

b.
$$(2y-5)(2y+5)$$

 $2y(2y+5) - 5(2y+5)$
 $4y^2 + 10y - 10y - 25$
 $4y^2 - 25$

d.
$$(8e^{3}+2)(-3e^{4}-1)$$

$$8e^{3}(-3e^{4}-1)+2(-3e^{4}-1)$$

$$-24e^{12}-8e^{3}-6e^{4}-2$$

e.
$$(7m-2)(3m^2+4m-8)$$

 $3m^2+4m-8$
 $7m-2$
 $-6m^2-8m+16$
 $t21m^3+28m^2-56m$ 0
 $\sqrt{21m^3+22m^2-64m+16}$

$$7w(2w-3) + (8w+5)(3w-4)$$

$$7w(2w-3) + 8w(3w-4) + 5(3w-4)$$

$$18w^{2} - 27w + 24w^{2} - 32w + 15w - 20$$

$$42w^{2} - 59w + 15w - 20$$

$$42w^{2} - 44w - 20$$