Slope-Intercept Form: y = mx + b

Parallel Lines

Graph the following equations:

$$y = 2x + 3$$

m=_____ b=____

$$y=2x-4$$

m=_____b=___

What do you notice about their slopes?

What do you notice about their y-intercepts?

Perpendicular Lines

Graph the following equations:

$$y = -2x - 6$$

m=_____y=____

$$y=\frac{1}{2}x-1$$

m=____y=

What do you notice about their slopes?

Perpendicular Slopes are

What is the opposite reciprocal or the following numbers?

a) 3

b) $\frac{1}{4}$

c) -5

 $d) \frac{-7}{9}$

Stens

- 1) Write equation in slope-intercept form: y = mx + b m = slope, b = y-intercept
- 2) The slope of a parallel line will be the <u>same slope</u> as the equation's slope
- 3) The slope of a perpendicular line will be the **opposite reciprocal** of the equation's slope

Find the slope of a line parallel to each given line.

1)
$$-2x - 8y = -24$$

$$2) -\frac{1}{3}y = -1 - \frac{1}{12}x$$

3)
$$2 - y = -x$$

4)
$$-\frac{10}{3} = -2x + \frac{2}{3}y$$

5)
$$-3y - x = 9$$

Find the slope of a line perpendicular to each given line.

6)
$$-27x = -60 - 15y$$

7)
$$4x - 3y = 12$$

8)
$$-5+5y-3x=0$$

9)
$$1 = 4x + y$$

10)
$$-5 = x$$

Slope-Intercept Form: y = mx m = 5/0 PC $b = 4 \sim 10.7$ b= y-intercept

Parallel Lines

Graph the following equations:

$$y = 2x + 3$$

$$m = 2 \quad b = 3$$

$$\frac{\partial}{\partial x}$$

$$y = 2x - 4$$

m= 2 b= -4

What do you notice about their slopes?

What do you notice about their y-intercepts?

Perpendicular Lines

Graph the following equations:

$$y = -2x - 6$$
 $m = -2$
 $y = -$

$$y = \frac{1}{2}x - 1$$

$$m = \frac{3}{2} \qquad \forall =$$

What do you notice about their slopes?

Perpendicular Slopes are opposite reciprocals of each other

What is the opposite reciprocal or the following numbers?

$$m_1=3$$
 a) 3 $m_2=\frac{-1}{3}$ $m_1=\frac{4}{3}$ $m_2=\frac{-4}{1}$ $m_2=\frac{1}{5}$ $m_2=\frac{9}{7}$

$$m_1 = \frac{1}{4}$$
 $m_2 = \frac{-4}{1}$

$$m_{1}=\frac{c_{1}-5}{1}$$
 $m_{2}=\frac{1}{5}$

2) The slope of a parallel line will be the <u>same slope</u> as the equation's slope

3) The slope of a perpendicular line will be the **opposite reciprocal** of the equation's slope

Find the slope of a line parallel to each given line.

1)
$$-2x - 8y = -24$$

 $-8y = 2x - 24$
 $-8y = \frac{2}{8}x - \frac{24}{8}$
 $m = \frac{-1}{4}$

2)
$$-\frac{1}{3}y = -1 - \frac{1}{12}x$$

 $y = \frac{3}{12}x + 3$
 $y = \frac{4}{4}x + 3$
 $y = \frac{7}{4}x + 3$

3)
$$2-y=-x$$

$$2+x=y$$

$$y=x+2$$

$$m=1$$

4)
$$-\frac{10}{3} = -2x + \frac{2}{3}y$$

 $\frac{3}{2} \left(\frac{2}{3}y = 2x - \frac{10}{3} \right)$
 $y = 3x - 5$ $m = 3$

5)
$$-3y-x=9$$

 $-3y=x+9$
 $y=\frac{-1}{3}x-3$ $m=\frac{-1}{3}$

Find the slope of a line perpendicular to each given line.

6)
$$-27x = -60 - 15y$$

$$15y = 27x - 60$$

$$y = \frac{27}{15}x - 4$$

$$y = \frac{9}{5}x - 4$$

$$m_{2} = -\frac{5}{9}$$

7)
$$4x-3y=12$$

$$-3y=-4x+12$$

$$y = \frac{4}{3}x-4$$

$$m_1 = \frac{4}{3}$$

$$m_2 = \frac{3}{4}$$

8)
$$-5+5y-3x=0$$

 $5y = 3x+5$

$$y = \frac{3}{5}x+($$

$$m_1 = \frac{3}{5}$$

$$m_2 = -\frac{5}{3}$$

9)
$$1=4x+y$$

 $y=-4x+1$ $m_1=-4=-\frac{4}{1}$

$$m_2=\frac{1}{4}$$

10) -5=x
$$X = -5 \iff m_1 = \text{undefined}$$

$$m_2 = 0$$