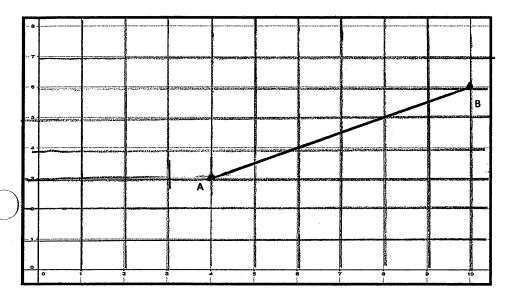
Geometry

Partitioning Line Segments Notes


A <u>Directed Line Segment</u> is a line segment that has a direction associated with it, moving from a starting point to an ending point. Partitioning a line segment means to find a point part way between 2 points.

Steps finding point on a partitioned segment:

- 1) Convert the ratio into a fraction: **Example**: Ratio of 3: 2 is written as $\frac{3}{3+2}$ or $\frac{3}{5}$
- 2) Label points: Starting point is (x_1, y_1) Ending point is (x_2, y_2)
- 3) Find the horizontal distance Δx ("delta x") between the 2 points $(x_2 x_1)$.
- 4) Find the horizontal distance Δy ("delta y") between the 2 points $(y_2 y_1)$.
- 5) Find the Location of New Ordered Pair

a. X-coordinate: $ratio \times \Delta x + x_1$

b. Y-coordinate: $ratio \times \Delta y + y_1$

Ex. 1:Find the coordinate of point P along directed line segment AB if A(4, 3) and B(10, 6) in a ratio of 2:1

- a) Find ratio: _____
 - and label points
- b) Find horizontal distance Δx
- $(\Delta x = x_2 x_1)$

 $\Delta x =$

- c) Find vertical distance Δy
- $(\Delta y = y_2 y_1)$
- $\Delta y = \underline{\hspace{1cm}}$

- d) Find point P
 - X-coordinate: $ratio \times \Delta x + x_1$ i)

ii) Y-coordinate: $ratio \times \Delta y + y_1$

Point P:

Ex. 2: Find the coordinate of point P along directed line segment AB if A(3, 5) and B(-7, 0) in a ratio of 3:2

- a) Find ratio: _____
- b) Find horizontal distance Δx

$$(\Delta x = X_2 - X_1)$$

 $\Delta x =$

c) Find vertical distance Δy

$$(\Delta y = y_2 - y_1)$$

 $\Delta y =$

d) Find point P

i) X-coordinate: $ratio \times \Delta x + x_1$

ii) Y-coordinate: $ratio \times \Delta y + y_1$

Point P:

3) Find the coordinate of point P along directed line segment AB if A(3, 4) and B(6, 10) in a ratio of 3:2

4) Find the coordinate of point P along directed line segment AB if A(-1, 2) and B(7, 8) in a ratio of 3:1

Homework:

Steps:

- a) Convert the ratio into a fraction: **Example**: Ratio of 3: 2 is written as $\frac{3}{3+2}$ or $\frac{3}{5}$
- b) Find the horizontal distance Δx ("delta x") between the 2 points $(x_2 x_1)$.
- c) Find the horizontal distance Δy ("delta y") between the 2 points $(y_2 y_1)$.
- d) Find the Location of New Ordered Pair
 - i) X-coordinate: $ratio \times \Delta x + x_1$
 - ii) Y-coordinate: $ratio \times \Delta y + y_1$
- 1. Find Point Z that partitions the directed line segment XY in a ratio of 5:3. X(-2, 6) and Y(-10, -2)

2. Find Point Z that partitions the directed line segment XY in a ratio of 2:3. X(2, -3) and Y(7,2)

3. Find Point Z that partitions the directed line segment YX in a ratio of 1:3. X(-2, -4) and Y(-7, 5) (Note the direction change in this segment.)

4. Find Point Zthat partitions the directed line segment YX in a ratio of 3: 4. X(5, -6) and Y(1, 2) (Note the direction change in this segment.)

Circle Equation in Standard Form: $(x - h)^2 + (y - k)^2 = r^2$ Center: (h, k) Radius: r

Write the below equations in standard form, then identify center and radius of circle:

$$x^2 + y^2 - 8x - 16y + 71 = 0$$

6)
$$x^2 + y^2 - 32x - 24y + 396 = 0$$

Write the slope-intercept form of the equation of the line described.

Steps: 1) Put equation of line in slope-intercept form (y = mx + b) and find the slope of the given line

- 2) Identify the appropriate slope we need:
 - a) Parallel slope means use same slope as the equation's slope
 - b) Perpendicular slope means use opposite reciprocal of the equation's slope
- 3) Plug in point (x,y) and slope (m) into equation y = mx + b to solve for b.
- 4) Write new equation in slope-intercept form: y = mx + b m = slope, b = y-intercept

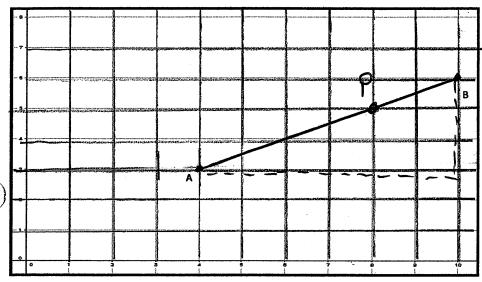
through:
$$(3, -4)$$
, parallel to $3y = -5x - 1$

7.

through: (3, 5), perp. to
$$y = -4x - 3$$

Geometry

Partitioning Line Segments Notes


A <u>Directed Line Segment</u> is a line segment that has a direction associated with it, moving from a starting point to a ending point. Partitioning a line segment means to find a point part way between 2 points.

Steps finding point on a partitioned segment:

- 1) Convert the ratio into a fraction: **Example**: Ratio of 3: 2 is written as $\frac{3}{3+2}$ or $\frac{3}{5}$
- 2) Label points: Starting point is (x_1, y_1) Ending point is (x_2, y_2)
- 3) Find the horizontal distance Δx ("delta x") between the 2 points $(x_2 x_1)$.
- 4) Find the horizontal distance Δy ("delta y") between the 2 points $(y_2 y_1)$.
- 5) Find the Location of New Ordered Pair

a. X-coordinate: $ratio \times \Delta x + x_1$

b. Y-coordinate: $ratio \times \Delta y + y_1$

 X_1 Y_2 Y_2 Ex. 1:Find the coordinate of point P along directed line segment AB if A(4, 3) and B(10, 6) in

a ratio of 2:1 a) Find ratio: $\frac{1}{1+2} = \frac{1}{3}$

and label points

b) Find horizontal distance Δx

$$(\Delta x = X_2 - X_1)$$

 $\Delta x = 10 - 4 = 6$

c) Find vertical distance Δy

$$(\Delta y = y_2 - y_1)$$

$$\Delta y = 6 - 3 = 3$$

d) Find point P

X-coordinate: $ratio \times \Delta x + x_1$

i)

ii) Y-coordinate: $ratio \times \Delta y + y$

 $\frac{2}{3}(3) + 3 = 5$

Ex. 2: Find the coordinate of point P along directed line segment AB if A(3, 5) and B(-7, 0) in a ratio of 3:2

- a) Find ratio: 3t2
- b) Find horizontal distance Δx $(\Delta x = x_2 - x_1)$

$$\Delta x = -7 - 3 = -10$$

c) Find vertical distance
$$\Delta y$$
 ($\Delta y = y_2 - y_1$)

$$\Delta y = 0-5 = -5$$

d) Find point P

i) X-coordinate:
$$ratio \times \Delta x + x_1$$

 $\frac{3}{5}(-10) + 3 = -3$

ii) Y-coordinate:
$$ratio \times \Delta y + y_1$$

$$\frac{3}{5}(-5) + 5 = 2$$

Point P:
$$\left(-3,2\right)$$

3) Find the coordinate of point P along directed line segment AB if A(3, 4) and B(6, 10) in a

ratio:
$$\frac{3}{3} = \frac{3}{5}$$

$$\Delta x = 6 - 3 = 3$$

$$X$$
-coord: $\frac{3}{5}(3) + 3 = 4.8$

ratio of 3:2
ratio:
$$\frac{3}{3+3} = \frac{3}{5}$$
 | X-coord: $\frac{3}{5}(3) + 3 = 4.8$
 $\Delta x = 6-3=3$ | Y-coord: $\frac{3}{5}(6) + 4 = 7.6$
 $\Delta y = 10-4=6$ | P(4.8, 7.6) |

4) Find the coordinate of point P along directed line segment AB if A(-1, 2) and B(7, 8) in a

ratio of 3:1
$$Vatio = \frac{3}{3+1} = \frac{3}{2}$$

$$\Delta x = 7 - (-1) = 8$$

$$X$$
-coord: $\frac{3}{4}(8) + -1 = 5$

ratio of 3:1

$$Vatio = \frac{3}{3+1} = \frac{3}{4}$$
 $X-coord: \frac{3}{4}(8) + -1 = 5$
 $\Delta X = 7-(-1) = 8$ $y-coord: \frac{3}{4}(6) + 2 = 6.5$
 $\Delta y = 8-2 = 6$

Homework:

Steps:

- a) Convert the ratio into a fraction: **Example**: Ratio of 3: 2 is written as $\frac{3}{3+2}$ or $\frac{3}{5}$
- b) Find the horizontal distance Δx ("delta x") between the 2 points $(x_2 x_1)$.
- Find the horizontal distance Δy ("delta y") between the 2 points $(y_2 y_1)$.
- d) Find the Location of New Ordered Pair
 - i) X-coordinate: $ratio \times \Delta x + x_1$
 - ii) Y-coordinate: $ratio \times \Delta y + y_1$

1. Find Point Z that partitions the directed line segment XY in a ratio of 5:3

$$X(-2, 6)$$
 and $Y(-10, -2)$
 $X_1, y_1, \qquad X_2, y_2$
 $\Delta X = -10 - (-2) = -8$
 $\Delta y = -2 - 6 = -8$

$$|x-coord: \frac{5}{8}(-8) + -2 = -7$$

$$|y-coord: \frac{5}{8}(-8) + 6 = 1$$

2. Find Point Zthat partitions the directed line segment XY in a ratio of X(2, -3) and Y(7,2)

$$\Delta x = 7 - 2 = 5$$

$$\Delta y = 3 - 3 = 5$$

$$y_2$$
 | X-coord: $\frac{2}{5}(5) + 2 = 4$
 y -coord: $\frac{2}{5}(5) + -3 = -1$

$$y$$
-coord: $\frac{2}{5}(5) + -3 = -1$

3. Find Point Zthat partitions the directed line segment YX in a ratio of 1:3. X(-2, -4) and Y(-7, 5) (Note the direction change in this segment.)

$$\Delta x = -2 - (-7) = 5$$

$$\Delta y = -4 - 5 = -9$$

$$\Delta x = -2 - (-7) = 5 \quad | x - coord : \frac{1}{4}(5) + -7 = -5.75$$

$$Z(-5.75, 2.75)$$

$$\Delta y = -4-5 = -9$$
 $|y-coord: \frac{1}{4}(-9) + 5 = 2.75$

4. Find Point Zthat partitions the directed line segment YX in a ratio of 3: 4 X(5, -6) and Y(1, 2) (Note the direction change in this segment.)

$$\Delta x = 5 - 1 = 4$$

$$\Delta y = -6 - 2 = -8$$

$$|x-coord|^{\frac{3}{2}}(4)+1=2.714$$
 or $\frac{19}{7}$

Review Circle Problems

Circle Equation in Standard Form: $(x - h)^2 + (y - k)^2 = r^2$ Center: (h, k) Radius: r

Write the below equations in standard form, then identify center and radius of circle:

5.
$$x^{2}+y^{2}-8x-16y+71=0$$

$$x^{2}-8x+16+y^{2}-16y+64=-71+16+64$$

$$x-4$$

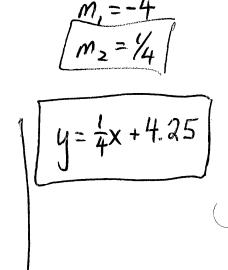
$$y-8$$

$$-4$$

$$(x-4)^{2}+(y-8)^{2}=9$$

$$C:(4,8) \quad r=3$$

Write the slope-intercept form of the equation of the line described.


Steps: 1) Put equation of line in slope-intercept form (y = mx + b) and find the slope of the given line

- 2) Identify the appropriate slope we need:
 - a) Parallel slope means use same slope as the equation's slope
 - b) Perpendicular slope means use opposite reciprocal of the equation's slope
- 3) Plug in point (x,y) and slope (m) into equation y = mx + b to solve for b.
- 4) Write new equation in slope-intercept form: y = mx + bm = slope, b = y-intercept

through: (3, -4), parallel to 3y = -5x - 17. y = mx + bm = -5/3 $-4=\frac{-5}{3}(3)+6$

$$\int_{y=-\frac{5}{3}x+1}$$

through: (3, 5), perp. to y = -4x - 34=mx+b 5= 3/4 +6 $5-\frac{3}{4}=6$ L=4.25

