Objective

The student will be able to:

use the Pythagorean Theorem

Designed by Skip Tyler, Varina High School

What is a right triangle?

leg hypotenuse

It is a triangle which has an angle that is 90 degrees.

The two sides that make up the right angle are called <u>legs</u>.

The side opposite the right angle is the **hypotenuse**.

The Pythagorean Theorem

In a right triangle, if a and b are the measures of the legs and c is the hypotenuse, then

$$a^2 + b^2 = c^2.$$

Note: The hypotenuse, c, is always the longest side.

Find the length of the hypotenuse if

1.
$$a = 12$$
 and $b = 16$.
 $12^2 + 16^2 = c^2$
 $144 + 256 = c^2$
 $400 = c^2$

Take the square root of both-sides. $\sqrt{400} = \sqrt{c^2}$ 20 = e

Find the length of the hypotenuse if 2. a = 5 and b = 7.

$$5^2 + 7^2 = c^2$$

 $25 + 49 = c^2$
 $74 = c^2$

Take the square root of both sides.

$$\sqrt{74} = \sqrt{c^2}$$

8.60 = c

Find the length of the hypotenuse given a = 6 and b = 12

- 1. 180
- 2. 324
- **√**3. 13.42
 - 4. 18

Find the length of the leg, to the nearest hundredth, if

3.
$$a = 4$$
 and $c = 10$.
 $4^2 + b^2 = 10^2$
 $16 + b^2 = 100$
Solve for b.
 $16 - 16 + b^2 = 100 - 16$
 $b^2 = 84$
 $\sqrt{b^2} = \sqrt{84}$
 $b = 9.17$

Find the length of the leg, to the nearest hundredth, if

4.
$$c = 10^{-}$$
 and $b = 7$.
 $a^{2} + 7^{2} = 10^{2}$
 $a^{2} + 49 = 100$
Solve for a.
 $a^{2} = 100 - 49$
 $a^{2} = 51$
 $\sqrt{a^{2}} = \sqrt{51}$
 $a = 7.14$

Find the length of the missing side given a = 4 and c = 5

5. The measures of three sides of a triangle are given below. Determine whether each triangle is a right triangle.

$$\sqrt{73}$$
, 3, and 8

Which-side is the biggest?

The square root of 73 (= 8.5)! This must be the hypotenuse (c).

Plug your information into the Pythagorean Theorem. It-doesn't matter which number is a or b.

Sides:
$$\sqrt{73}$$
, 3, and 8
 $3^2 + 8^2 = (\sqrt{73})^2$
 $9 + 64 = 73$
 $73 = 73$

Since this is true, the triangle is a right triangle!! If it was not true, it would not be a right triangle.

Determine whether the triangle is a right triangle given the sides 6, 9, and $\sqrt{45}$

3. Purple