* A <u>quadratic equation</u> is as an equation of degree 2, meaning that the highest exponent of this function is 2.

* The quadratic formula is used to solve an equation of the form $ax^2 + bx + c = 0$

*This formula can solve any equation that can be solved by factoring and completing the square

Quadratic Formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 given $ax^2 + bx + c = 0$

Solve for x below using quadratic formula

1.
$$x^2 - 5x + 6 = 0$$

2.
$$x^2 + 24x = 4$$

3.
$$2x^2 + 10 = x$$

4.
$$2x^2 - 9 = 0$$

The Discriminant is number (from the expression) inside the square root of the quadratic formula.

Since the quadratic formula is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, the discriminant is the $b^2 - 4ac$

The discriminant describes the **nature**, or the type, of solutions

If the Discriminant is **positive**, there are 2 real answers (2 real roots)

If the Discriminant is **negative**, there are 2 imaginary answers (2 imaginary roots)

If the Discriminant is zero, there is 1 real answer. (2 real answers being the same value) (1 real root)

Find the discriminant for the below and describe the type of roots for each equation:

5.
$$x^2 - 5x + 6 = 0$$

6.
$$x^2 + 24x - 4 = 0$$

5.
$$x^2 - 5x + 6 = 0$$
 6. $x^2 + 24x - 4 = 0$ 7. $2x^2 - x + 10 = 0$ 8. $2x^2 - 9 = 0$

$$8. \ 2x^2 - 9 = 0$$

a) Solve equation using quadratic formula b) find discriminant c) describe the nature of the roots

9.
$$2x^2 - 3x - 5 = 0$$

10.
$$x^2 + 12x = 3$$

11.
$$2x^2 + 9 = 3x$$

12.
$$2x^2 - 7 = 0$$

Quadratic Formula and Discriminant Day 1 Homework

a) Solve equation using quadratic formula b) find discriminant c) describe the nature of the roots

 $4x^2 - 11x = 3$ 2. $x^2 + 7x = 5$

3.	$5x^2$	+	1	=	3x	

4. $5x^2 - 9 = 0$

					_
a)	Solve	equation	using	quadratic	formula

b) find discriminant c) describe the nature of the roots

5.
$$-7 + 3x^2 = 4x$$

6.
$$x^2 + 11x = -4$$

$$7. \quad 2x^2 + 13 = 5x$$

$$8. \ 3x^2 - 17 = 0$$

Analytic Geometry Quadratic Formula and Discriminant

Jan 26, 2015 (Mon)

Key

* A <u>quadratic equation</u> is as an equation of degree 2, **meaning** that the highest exponent of this function is

* The quadratic formula is used to solve an equation of the form $ax^2 + bx + c = 0$

*This formula can solve any equation that can be solved by factoring and completing the square

Quadratic Formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 given $ax^2 + bx + c = 0$

Solve for x below using quadratic formula

	TO TOT IT DETOTE WITH 6	addratte formala
1. x ² -	-5x + 6 = 0	
a=1	5 ± J25-461)(6)
6=-5	2(1)	
C=6	5 + VI	5+1 5-1
	2	2,2
	X = = = 4	
	X=3,2	

2.
$$x^{2} + 24x = 4$$

 $x^{2} + 24x - 4 = 0$
 $a = 1$
 $b = 24$
 $c = -4$
 $-24 \pm \sqrt{24^{2} + 4(1)(-4)}$
 $-2(1)$
 $-24 \pm \sqrt{592}$
 $-24 \pm 4\sqrt{37}$
 $-24 \pm 4\sqrt{37$

3.
$$2x^{2} + 10 = x$$

$$2x^{2} - x + 10 = 0$$

$$1 \pm \sqrt{1^{2} - 4(2)(10)} = \frac{1 \pm \sqrt{-79}}{4}$$

$$2(2)$$

$$1 \pm i\sqrt{79}$$

$$4$$

4.
$$2x^{2}-9=0$$
 $A=2$
 $0 \pm \sqrt{0-4(2)(-9)}$
 $0 \pm \sqrt{3} = \frac{9}{2}$
 $0 \pm \sqrt{2} = \frac{3}{2}$
 $0 \pm \sqrt{2} = \frac{3}{2}$

The Discriminant is number (from the expression) inside the square root of the quadratic formula.

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, the discriminant is the $b^2 - 4ac$

The discriminant describes the nature, or the type, of solutions

If the Discriminant is **positive**, there are 2 real answers (2 real roots)

If the Discriminant is negative, there are 2 imaginary answers (2 imaginary roots)

If the Discriminant is zero, there is 1 real answer. (2 real answers being the same value) (1 real root)

Find the discriminant for the below and describe the type of roots for each equation:

5.
$$x^2 - 5x + 6 = 0$$

$$b^2 - 4ac$$

$$5^2 - 4(1)(6)$$

$$25 - 24 = 1 > 0$$
2 Real solutions
$$2 \text{ Real solutions}$$

6.
$$x^{2} + 24x - 4 = 0$$
7. $2x^{2} - x + 10 = 0$
8. $2x^{2} - 9 = 0$

$$24^{2} - 4(1)(-4)$$

$$1^{2} - 4(2)(10)$$

$$-79 < 0$$

$$2 \text{ Real States}$$
2 imaginar roots
$$2 \text{ Real Roots}$$

Quadratic Formula and Discriminant Day 1 Homework

Jan 26, 2015 (Mon)

1.
$$4x^2 - 11x = 3$$

$$4x^2 - 11x - 3 = 0$$

$$\frac{11 \pm \sqrt{121 - 4(4)(-3)}}{2(4)} = \frac{11 \pm \sqrt{169}}{8}$$

a) Solve equation using quadratic formula b) find discriminant c) describe the nature of the roots

2.
$$x^2 + 7x = 5$$

$$\frac{-7 + \sqrt{49 - 4(1)(-5)}}{2(1)}$$

$$3. \quad 5x^2 + 1 = 3x$$

$$5x^2 - 3x + 1 = 0$$

4.
$$5x^2 - 9 = 0$$

a) Solve equation using quadratic formula b) find discriminant c) describe the nature of the roots

5.
$$-7 + 3x^2 = 4x$$

$$3x^2 - 4x - 7 = 0$$

$$x = \frac{7}{3}, -1$$

6.
$$x^2 + 11x = -4$$

$$x^2+11x+4=0$$

7.
$$2x^2 + 13 = 5x$$

$$8. \ \ 3x^2 - 17 = 0$$

$$0\pm\sqrt{3^2-4(3)(-17)} = \sqrt{204}$$

$$x + 2\sqrt{51}$$
 $x_0 + \sqrt{51}$ 3