
Analytic Geometry Quadratic Formula and Discriminant

* A <u>quadratic equation</u> is as an equation of degree 2, meaning that the highest exponent of this function is 2.

* The quadratic formula is used to solve an equation of the form $ax^2 + bx + c = 0$

*This formula can solve any equation that can be solved by factoring and completing the square

Quadratic Formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 given $ax^2 + bx + c = 0$

Solve for x below using quadratic formula

1.
$$x^2 - 5x + 6 = 0$$

2.
$$x^2 + 24x = 4$$

3.
$$2x^2 + 10 = x$$

4.
$$2x^2 - 9 = 0$$

The Discriminant is number (from the expression) inside the square root of the quadratic formula.

Since the quadratic formula is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, the discriminant is the $b^2 - 4ac$

The discriminant describes the nature, or the type, of solutions

If the Discriminant is positive, there are 2 real answers (2 real roots)

If the Discriminant is negative, there are 2 imaginary answers (2 imaginary roots)

If the Discriminant is zero, there is 1 real answer. (2 real answers being the same value) (1 real root)

Find the discriminant for the below and describe the type of roots for each equation:

$$5. x^2 - 5x + 6 = 0$$

$$6. x^2 + 24x - 4 = 0$$

5.
$$x^2 - 5x + 6 = 0$$
 6. $x^2 + 24x - 4 = 0$ 7. $2x^2 - x + 10 = 0$

8.
$$2x^2 - 9 = 0$$

a) Solve equation using quadratic formula b) find discriminant c) describe the nature of the roots

9.
$$2x^2 - 3x - 5 = 0$$

10.
$$x^2 + 12x = 3$$

11.
$$2x^2 + 9 = 3x$$

12.
$$2x^2 - 7 = 0$$

Quadratic Formula and Discriminant Day 1 Homework

a) Solve equation using quadratic formula b) find discriminant c) describe the nature of the roots

 $4x^2 - 11x = 3$

2. $x^2 + 7x = 5$

3. $5x^2 + 1 = 3x$

4. $5x^2 - 9 = 0$

- a) Solve equation using quadratic formula b) find discriminant c) describe the nature of the roots
- 5. $-7 + 3x^2 = 4x$

6. $x^2 + 11x = -4$

7	2~2	,	12	 52
/	/ X		1.)	 -DX

$$8. \ 3x^2 - 17 = 0$$