#### **Similarity Notes #1**

Name:

### **Ratios and Proportions**

The \_\_\_\_\_ of x to y is the \_\_\_\_\_ obtained by dividing x by

Example:  $\chi$ 

A <u>ratio</u> can be represented in the following ways:

- 2. 1/2
- 3. 1 to 2

### Examples:

1. Give each ratio in simplest form:

(b) 
$$\frac{24}{36}$$
 i2  $\frac{2}{3}$ 

A proportion is an equation stating that two ratios are equal. Example:  $\frac{1}{2} = \frac{3}{6}$ 

Example: 
$$\frac{1}{2} = \frac{3}{6}$$

To Solve for an Unknown in a Proportion: Cross Multiply.

$$\frac{a}{b} = \frac{c}{d} \text{ then } ad = bc$$

(c) 2:(x-3)=6:(x+5)

2. Solve for x.



$$3x = 4(6)$$



- Now you try! 3. (a) Reduce:  $\frac{15}{60} = \frac{3}{12}$



(b) 3:5=6:x

$$\frac{3}{5} = \frac{6}{x} X = 10$$

- (b) Solve, for x.

$$\frac{\frac{6}{18} = \frac{8}{x}}{6x} = 8(18)$$

$$\frac{6x = 144}{6}$$

$$\frac{6x = 144}{6}$$

$$X = 24$$

# Examples:

- 4. Given: AB = 8 and BC = 12; State the following ratios.
  - (a) AB: BC
- (b) AC: BC

(c) AB: AC

 $\frac{3}{(x+3)} = \frac{2}{(x+1)}$ 

3(x+1) = 2(x+3)

5. Will the following ratios form a proportion?

(a) 
$$\frac{6}{24}$$
 and  $\frac{4}{16}$   $\frac{4}{16}$   $\frac{4}{16}$  (b)  $\frac{2 \times 3}{9 \times 10}$   $\frac{1}{10}$   $\frac{1}{10}$ 

(b) 
$$\frac{2}{9} = \frac{3}{10}$$
  
20  $\pm 27$ 

6. A segment is divided in the ratio of 3:8. If the segment is 44 cm long, find the length of each part of the segment.



$$\frac{11}{44} = \frac{3}{x} | \frac{11}{44} = \frac{3}{y}$$

$$11x = 132 | 11y = 352$$

C

7. Two complementary angles are in the ratio of 2:7. Find the measure of each angle.

\* Add to be 900

$$\frac{2}{7} = \frac{x}{90-x}$$

$$\frac{2}{7} = \frac{2}{90-x}$$

$$\frac{2}{7} = \frac{2}{90-x}$$

$$\begin{vmatrix} 9x = 180 & 20^{\circ} \\ \hline 9 & 7 & 70^{\circ} \end{vmatrix}$$

$$x = 20$$

#### Similarity Notes # 2

Name:

## Similar Polygons

Two polygons are <u>Similar</u> (~) if their vertices can be matches so that:

- Corresponding <u>angles</u> are <u>congruent</u>.

  Ratios of lengths of corresponding <u>lengths</u> are <u>propor</u>

If ABCD ~ WXYZ, then:

- **1.**  $\angle A \cong \angle W$ ,  $\angle B \cong \angle X$ ,  $\angle C \cong \angle Y$ , and  $\angle D \cong \angle Z$
- 2.  $\frac{WX}{AB} = \frac{XY}{BC} = \frac{YZ}{CD} = \frac{WZ}{AD}$





Conversely, if parts 1 & 2 are true, then you can conclude that ABCD ~ WXYZ.

factor \_\_\_ of two similar polygons is the ratio that will transform the first polygon to the second.

To find the scale factor between two figures, write a ratio using the length of one of the sides of the transformed figure (the second figure) over the length of the corresponding sides of the original figure.

original transformed

### Example #1:

ABCD ~ WXYZ.

Find the scale factor that will transform the first figure to the second figure.







### **CCGPS** Analytic Geometry

# Similarity

# original

# Example # 2: MATH ~ KIDS

(a) 
$$\angle A \cong \angle I$$

(b) 
$$m \angle K = 2M = 90^{\circ}$$

(c) 
$$m \angle T = 50^{\circ}$$

(d) 
$$\frac{ID}{AT} = \frac{IK}{?}$$
 ? =  $\frac{AM}{?}$ 

(e) Scale factor = 
$$\frac{k}{12} = \frac{10}{12} = \frac{5}{6}$$

(f) 
$$DS = \frac{10}{12} = \frac{\times}{18}$$





# Now you try! 3. ABC ~ XYZ

(a) Scale factor = 
$$\frac{16}{8} = \frac{5}{4}$$

(b) 
$$j = 16$$

(c) 
$$m\angle Z = 38^{\circ}$$





$$\frac{3}{4} = \frac{20}{j}$$

# 360 - 68

# 4. Quad. TAMU ~ Quad. T'A'M'U'

(a) Scale factor = 
$$\frac{k}{4} = \frac{4}{6} = \frac{2}{3}$$

(b) 
$$x = \frac{6}{6} = \frac{4}{9}$$

$$\frac{6x = 36}{6}$$

(c) 
$$y = 12$$





#### Similarity Notes #3

Name:

# **Midsegments of Triangles**

Midsegment: The segment connecting the <u>Midpoints</u> of two sides of a triangle.





Conjecture: A midsegment of a triangle is

parallel to the 3rd side and one half
the length of the third side.

Notation:  $\overline{DE} / / \overline{BC}$  and 2(DE) = BC



#### **Guided Practice:**

- 1. (a) If AC = 20, then DE = 10
  - (b) If DE = 6, then AC = 12.



(c) If DE = x + 6 and AC = 3x + 4, then x =  $\frac{8}{2(x+6)}$  = AC 2x+12 = 3x+4 2x+12 = 3x+4 12 = x+4



- **2.** Find the perimeter of  $\Delta TOP$ .
- 3. Find the missing angle measures.





**4.** Find the perimeter of  $\Delta TEN$ .



5. Exactly one of the values x, y, or z can be determined. Find it.

(a)





$$X = \frac{1}{2}(5) = 2.5$$

# Similarity Notes #4

Name: \_\_\_\_\_

## **Triangle Similarity**

#### **Angle Angle Similarity:**

AA~

If 2 angles of one triangle are congruent to 2 angles of another triangle, then the triangles are similar.





#### **Side Side Similarity:**

SSS~

If corresponding sides of two triangles are proportional, then the two triangles are similar.





#### **Side Angle Side Similarity:**

SAS~

If an angle of one triangle is congruent to an angle of another triangle and the sides including those angles are in proportion, then the triangles are similar.





#### **Guided Practice**

1. Reason: SAS



2. Reason: AA or SAS

A WIN ~ A CAR





3. Reason: 2 triangles similar













Determine if the triangles are similar. If so, state the reason (AA~, SAS~, or SSS~) that would prove this and then complete the similarity statement.

1. Reason: AA









2. Reason: 555

3. Reason: 4ft





