Geometry Notes: Simplifying Radicals

Date: Aug 20, 2015 (Thurs)

Essential Question 1: How do you simplify a radical?

Essential Ouestion 2: How do you add, subtract, or multiply radicals?

A square root of a number is a value such that the ______ of it with itself is the number. The symbol is called a _____ and it indicates the positive square root of a number. The number inside the symbol is called the . .

A radical expression is simplified when ...

- , other than 1. ... the radicand has no OK Not OK
- of a fraction. ... no radicals are in the OK Not OK

-Do NOT use a _____ and get a decimal for a square root.

To simplify square roots, we need to be able to recognize perfect squares.

Example 1: Find the following squares.

Example 1: Find the following squares:

a.
$$1^2 =$$

b. $2^2 =$

c. $3^2 =$

d. $4^2 =$

e. $5^2 =$

f. $6^2 =$

g. $7^2 =$

h. $8^2 =$

i. $9^2 =$

j. $10^2 =$

k. $11^2 =$

l. $12^2 =$

m. $13^2 =$

Example 2: Simplify the following perfect square radical expressions.

a.
$$\sqrt{81}$$

b.
$$\sqrt{49}$$

c.
$$\sqrt{169}$$

Example 3: Find the largest perfect square factor of the radicands to simplify.

a.
$$\sqrt{54}$$

b.
$$5\sqrt{24}$$

c.
$$\sqrt{98b^4c^3}$$

d.
$$2x\sqrt{27x^3y^2}$$

Example 4: Find the largest perfect square factor of the radicands to simplify.

a.
$$\sqrt{48}$$

b.
$$5\sqrt{68}$$

b.
$$5\sqrt{68}$$
 c. $\sqrt{50b^7c^8}$

d.
$$3y\sqrt{18x^5y^9}$$

Simplify.

1)
$$\sqrt{18}$$

2)
$$\sqrt{256}$$

3)
$$6\sqrt{108}$$

4)
$$-\sqrt{32}$$

5)
$$\sqrt{18x}$$

6)
$$\sqrt{50k^2}$$

7)
$$5\sqrt{252x^2y^2}$$

8)
$$3\sqrt{125u^3v}$$

9)
$$5\sqrt{125x^3y^2}$$

10)
$$-3\sqrt{75a^3b^4}$$

Geometry Notes: Simplifying Radicals Date: Aug 20, 2015 (Thurs) Essential Question 1: How do you simplify a radical? Essential Question 2: How do you add, subtract, or multiply radicals? A square root of a number is a value such that the Square of it with itself is the number. The symbol is called a <u>vadical</u> and it indicates the positive square root of a number. The number inside the symbol is called the radicand A radical expression is simplified when the radicand has no Square factors , other than 1. Not OK OK ... no radicals are in the denominator $\frac{OK}{\sqrt{2}}$ of a fraction. Not OK -Do NOT use a calculator and get a decimal for a square root. To simplify square roots, we need to be able to recognize perfect squares.

Example 1: Find the following squares. 1. $12^2 = /44$ m. $13^2 = /4$ j. $10^2 = 100$ k. $11^2 = 171$

Example 2: Simplify the following perfect square radical expressions.

a.
$$\sqrt{81} = 9$$

a.
$$\sqrt{81} = 7$$
 b. $\sqrt{49} = 7$

c.
$$\sqrt{169} = 13$$

Example 3: Find the largest perfect square factor of the radicands to simplify.

b. $5\sqrt{24}$

c. $\sqrt{98b^4c^3}$ $\sqrt[3]{49.7b^4c^3}$ d. $2x\sqrt{27x^3y^2}$

Example 4: Find the largest perfect square factor of the radicands to simplify.

1. $\sqrt{48}$

b. $5\sqrt{68}$ c. $\sqrt{50b^7c^8}$ $\sqrt{25.2b^6b^8c^8}$

*Find largest perfect square that can go into the vadicand

Simplifying Radicals

Period Date

Simplify.

1)
$$\sqrt{18}$$
 $\sqrt{9 \cdot 2} = 3\sqrt{2}$

2)
$$\sqrt{256}$$
 = 16 | 4 .36 100 9 49 121 16 64 144 169

3)
$$6\sqrt{108}$$
 $6 \cdot \sqrt{36 \cdot 3}$ $36\sqrt{3}$ $36\sqrt{3}$ $36\sqrt{3}$

4)
$$-\sqrt{32}$$
 $-\sqrt{16 \cdot 2} = -4\sqrt{2}$

5)
$$\sqrt{18x}$$
 $\sqrt{9.2} \times$ $\sqrt{3\sqrt{2}x}$

6)
$$\sqrt{50k^2}$$
 $5k\sqrt{2}$
 $5\sqrt{2k^2} = 5k\sqrt{2}$

7)
$$5\sqrt{252x^2y^2}$$
 5 $\sqrt{36.7} \times ^2 y^2$ 30 $xy\sqrt{7}$ 6 \times 9

8)
$$3\sqrt{125u^3v}$$
 $3\sqrt[3]{25.5u^3v}$ $2\sqrt{3}$ $15u\sqrt{5uv}$ 5 u $4R1$ $3.5u\sqrt{5uv}$ $15u\sqrt{5uv}$

$$5.6. \times y \sqrt{7}$$

$$9) 5\sqrt{125x^3y^2}$$

$$25xy\sqrt{5x}$$

$$30\times y\sqrt{7}$$

10)
$$-3\sqrt{75}a^{3}b^{4}$$

 $-15b^{2}a\sqrt{3}a$

$$2\sqrt{3}a$$

$$2\sqrt{3}a$$

$$2\sqrt{3}a$$

$$5.\sqrt{25.5}x^{3}y^{2}$$

 $5.\sqrt{25.5}x^{3}y^{2}$
 $25\sqrt{5}x^{3}y^{2}$
 $25\times y\sqrt{5}\times$

$$-3\sqrt{25.3a^36^4}$$

 $-3.5\cdot a\cdot 6^2\sqrt{3}a$

-15ab V3a