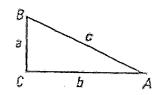
I. <u>Converse of Pythagorean Theorem</u>

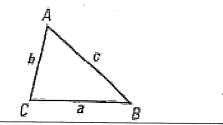
If $a^2 + b^2 = c^2$, then $\triangle ABC$ is a **RIGHT** triangle



II. Theorem for Acute Triangles

If $a^2 + b^2 > c^2$, then $\triangle ABC$ is an **ACUTE** triangle

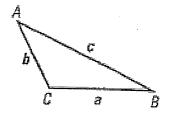
*acute means that an angle is less than 90°



III. Theorem for Obtuse Triangles

If $a^2 + b^2 < c^2$, then $\triangle ABC$ is an **OBTUSE** triangle

*obtuse means that an angle is more than 90°



Decide whether the set of numbers can represent the side lengths of a triangle. If they can, classify the triangle as *right*, *acute*, or *obtuse*.

1. 38, 77, 86

2. 10.5, 36.5, 37.5

3. 10, 11, 14

4. $\sqrt{13}$, 6, 7

5. 20, 99, 101

6. 21, 28, 35

More Right Triangle Practice Problems

30-60-90 Triangle Steps:

To convert short $leg \rightarrow hypotenuse$, multiply short leg by 2To convert hypotenuse → short leg, divide hypotenuse by 2

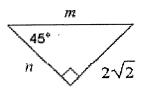
To convert short leg \rightarrow long leg, <u>multiply</u> short leg by $\sqrt{3}$ To convert long leg \rightarrow short leg, <u>divide</u> long leg by $\sqrt{3}$

45-45-90 Triangle Steps:

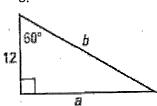
To convert leg \rightarrow hypotenuse, <u>multiply</u> leg by $\sqrt{2}$ To convert hypotenuse $\rightarrow \log$, <u>divide</u> hypotenuse by $\sqrt{2}$

Find the value of each variable

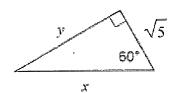
7.



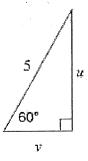
8.



9.



10.



Word Problems:

- 11. The side lengths of an equilateral triangle is 5 cm. Find the length of the altitude of the triangle
- *Hint: Equilateral triangle means all sides are equal and all angles are the same (each angle is 60°)

12. The perimeter of a square is 36 inches. Find the length of a diagonal

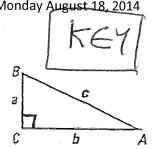
13. The diagonal of a square is 26 inches. Find the length of a side

Classifying Acute, Obtuse, and Right Triangles

Monday August 18, 2014

Converse of Pythagorean Theorem

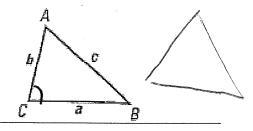
If
$$a^2 + b^2 = c^2$$
, then $\triangle ABC$ is a **RIGHT** triangle



II. **Theorem for Acute Triangles**

If
$$a^2 + b^2 > c^2$$
, then $\triangle ABC$ is an **ACUTE** triangle

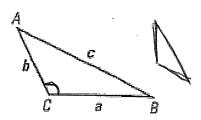
*acute means that an angle is less than 90°



Theorem for Obtuse Triangles 111.

If
$$a^2 + b^2 < c^2$$
, then $\triangle ABC$ is an **OBTUSE** triangle

*obtuse means that an angle is more than 90°

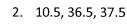


Decide whether the set of numbers can represent the side lengths of a triangle. If they can, classify the triangle as right, acute, or obtuse.

1.
$$38,77,86$$

$$38^{2} + 77^{2} \boxed{86}^{2}$$

offuce



acute triangle

4.
$$\sqrt{13}$$
, 6, 7

right triangle

5. 20, 99, 101

right triunde

6. 21, 28, 35

$$21^2 + 28^2 = 35^2$$

right trayle

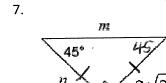
More Right Triangle Practice Problems

30-60-90 Triangle Steps:

To convert short leg \rightarrow hypotenuse, $\frac{\text{multiply}}{\text{divide}}$ short leg by 2 To convert hypotenuse \rightarrow short leg, $\frac{\text{divide}}{\text{divide}}$ hypotenuse by 2

To convert short leg \rightarrow long leg, <u>multiply</u> short leg by $\sqrt{3}$ To convert long leg \rightarrow short leg, <u>divide</u> long leg by $\sqrt{3}$

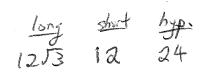
Find the value of each variable

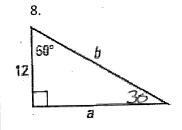


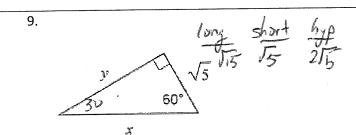
$$m = 2\sqrt{2}.\sqrt{2}$$

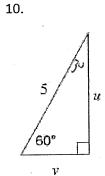
45-45-90 Triangle Steps:

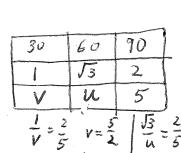
To convert leg \Rightarrow hypotenuse, <u>multiply</u> leg by $\sqrt{2}$ To convert hypotenuse \Rightarrow leg, <u>divide</u> hypotenuse by $\sqrt{2}$







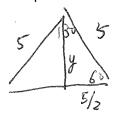




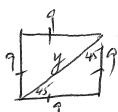
Word Problems:

11. The side lengths of an equilateral triangle is 5 cm. Find the length of the altitude of the triangle

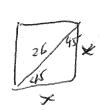
*Hint: Equilateral triangle means all sides are equal and all angles are the same (each angle is 60°)

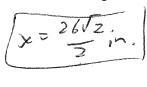


12. The perimeter of a square is 36 inches. Find the length of a diagonal



13. The diagonal of a square is 26 inches. Find the length of a side





Assignment

30-60-90

Date_____Period

Find the missing side lengths. Leave your answers as radicals in simplest form.

1)
$$\log_{y} \sqrt{5}$$

$$y = \sqrt{15}$$

 $x = 2\sqrt{5}$

$$y = 60^{\circ}$$
 $x = 3\sqrt{3}$

$$x = 6$$

$$y = 3$$

long short hy

$$\begin{array}{c}
b \\
\hline
30^{\circ} \\
a
\end{array}$$

$$b = \frac{\sqrt{18}}{3} = \frac{3\sqrt{2}}{3} = \sqrt{2}$$
 4)

$$a = 2\sqrt{6}$$

$$\sqrt{3}$$
 60° m

$$n=3$$

$$m=2\sqrt{3}$$

$$\begin{array}{c|c}
v & \frac{5}{2} \\
u & 60^{\circ}
\end{array}$$

6)
$$x / 3\sqrt{2}$$
 $\sqrt{5}$

$$y=16$$
 $X=2\sqrt{6}$

$$y = 6$$

$$x = 4\sqrt{3}$$

$$V = \frac{\sqrt{3}}{6}$$

$$U = \frac{\sqrt{3}}{6} \cdot \sqrt{3} = \frac{3}{6} = \frac{1}{2}$$

10)
$$\frac{n}{m \cdot 60^{\circ}} \sqrt{6}$$

$$m = 2\sqrt{6}$$

$$n = \sqrt{6} \cdot \sqrt{3} = 3\sqrt{2}$$

11)
$$\frac{2\sqrt{3}}{3} = 0^{\circ} \times \frac{x}{3}$$

$$\frac{2\sqrt{3}}{3} = \frac{4\sqrt{3}}{3}$$

$$y = \frac{2\sqrt{3}}{3} = \frac{2}{3}$$

$$y = \frac{2\sqrt{3}}{3} = \frac{2}{3}$$

12)
$$\frac{8\sqrt{3}}{3}$$
 $y = \frac{4}{3}$ $x = 4$

13)
$$u = 3\sqrt{2}$$

$$v = \sqrt{3\sqrt{2}}$$

$$\sqrt{3\sqrt{2}}$$

$$\sqrt{3\sqrt{2}}$$

$$\sqrt{2}$$

$$\sqrt{2}$$

$$\sqrt{2}$$

$$\sqrt{2}$$

$$\begin{array}{c|c}
x \\
30^{\circ} & 4\sqrt{3}
\end{array}$$

$$y = 2\sqrt{3}$$

 $x = 2\sqrt{3} \cdot \sqrt{3} = 2 \cdot 3 = 6$

$$b=2$$
 $a=2\sqrt{3}$