Solve equation by factoring

1. $48x^3 = 9x + 6x^2$

Solve equation by Completing the Square

2. $16 + 4x^2 = 32x$

Factored Form:

Solution:

- 3. a) Solve equation by quadratic formula
 - b) Find the discriminant
- c) Based on the discriminant, find the number and the type of solutions

$$3 - 4x^2 = 7x$$

4. Solve equation choosing a method (this may be solved multiple ways)

$$4x^2 + 12x^3 = 12x$$

Solve equation	by	factoring
----------------	----	-----------

5.
$$20x^4 - 60x^2 - 65x^3 = 0$$

Solve equation by Completing the Square

6.
$$2x^2 + 10 = 16x$$

Solution:

- 7. a) Solve equation by quadratic formula
 - b) Find the discriminant
- c) Based on the discriminant, find the number and the type of solutions

$$2x^2 + 7x = -9$$

8. Create a quadratic function that has solutions at x = -3/4, and x = 2/3. Make sure that it is written in standard form $ax^2 + bx + c = 0$

CCGPS Analytic Geometry <u>Unit 5A Test Review #2</u>

Solution key

Solve equation by factoring

1.
$$48x^3 = 9x + 6x^2$$
 $48x^3 - 6x^2 - 9x = 0$

$$3 \times (16x^2 - 2x - 3) = 0$$

$$3 \times (x - \frac{5}{16})(x + \frac{6}{16}) = 0$$

$$3 \times (x - \frac{1}{2})(x + \frac{3}{2}) = 0$$

3x(2x-1)(8x+3)

Factored Form:
$$3 \times (8x+3)(2x-1)$$

Solution: $X = 0^{-3}/8 + 1/2$

Solve equation by Completing the Square

2.
$$16 + 4x^{2} = 32x$$

$$\frac{4x^{2} - 32x + 16 = 0}{4}$$

$$x^{2} - 8x + 44 = 0$$

$$\left(\frac{1}{2}\right)^{2} = \left(-\frac{8}{2}\right)^{2} = (-4)^{2} - 16$$

$$\left(x - 4\right)(x - 4) = 12$$

$$\left(x - 4\right)^{2} = 12$$

- 3. a) Solve equation by quadratic formula
 - b) Find the discriminant
- c) Based on the discriminant, find the number and the type of solutions

$$3-4x^{2}=7x \qquad 4x^{2}+7x-3=0$$

$$a=4 \qquad -7+\sqrt{7}^{2}-4(4)(-3)$$

$$c=-3 \qquad 2(4)$$

$$-7+\sqrt{97} = -7+\sqrt{97}$$

$$8+\sqrt{97}$$
Discriminant = 97 > 0

2 Roal solutions

4. Solve equation choosing a method (this may be solved multiple ways) $\frac{1}{2}$ guadratic formula $4x^2 + 12x^3 = 12x$ $12x^3 + 4x^2 - 12x = 0$ $4x(3x^2 + 1x - 3) = 0$ 4 = 3 6 = 1 $1 + \sqrt{1^2 - 4(3)(-3)}$ 1 = -3 $1 + \sqrt{37}$ 1 = -1 2(3) $1 + \sqrt{37}$ 1 = -1 2(3) 1 = -1 3 = -1 4 = -1 3 = -1 3 = -1 4 = -1 3 = -1 3 = -1 4 = -1 3 = -1 4 = -1 3 = -1 4 = -1 3 = -1 4 = -1 3 = -1 4 = -1

2 Real Roots

Solve equation by factoring

5.
$$20x^{4} - 60x^{2} - 65x^{3} = 0$$

$$20x^{4} - 65x^{3} - 60x^{2} = 0$$

$$5x^{2}(4x^{2} - 13x - 12) = 0$$

$$-\frac{16}{4} \frac{3}{4} \frac{3.16}{4}$$

$$5x^{2}(x - \frac{16}{4})(x + \frac{3}{4})$$

$$5x^{2}(x - 4)(4x + 3)$$

Factored Form:
$$5x^2(x-4)(4x+3)$$

Solution: $x = 0$ 4 $-3/4$

- 7. a) Solve equation by quadratic formula
 - b) Find the discriminant
- c) Based on the discriminant, find the number and the type of solutions

$$2x^{2}+7x = 9 \qquad 2x^{2}+7x+9=0$$

$$-7 \pm \sqrt{49-4(2)(49)}$$

$$2(2)$$

$$-7 \pm \sqrt{-23} = -7 \pm i\sqrt{23}$$

$$4 \qquad Y = -\frac{7}{4} \pm i\sqrt{23}$$

$$2 = -23 < 0$$

$$2 = -23 < 0$$

$$2 = -23 < 0$$

$$2 = -23 < 0$$

$$2 = -23 < 0$$

Solve equation by Completing the Square

6.
$$2x^{2}+10=16x$$
 $\frac{2x^{2}-16x+10}{2}=\frac{0}{2}$

$$x^{2}-8x+5=0$$

$$x^{2}-8x+16=-5+16$$

$$(\frac{5}{2})^{2}=(\frac{-8}{5})^{2}=(4+)^{2}=16$$

$$(x-4)^{2}=11$$

$$x-4=\pm\sqrt{11}$$

$$x=4\pm\sqrt{11}$$

8. Create a quadratic function that has solutions at x = -3/4, and x = 2/3. Make sure that it is written in standard form $ax^2 + bx + c = 0$

$$(x + \frac{3}{4})(x - \frac{2}{3})$$

$$(4x + 3)(3x - 2)$$

$$12x^{2} - 8x + 9x - 6$$

$$12x^{2} + 1x - 6$$