Analytic Geometry Quadratic Word Problems WS #2

Projectile Motion Formula

$$h(t) = \frac{1}{2}\alpha t^2 + v_i t + h_i$$

h(t) = final height (end of the problem)

 $a = acceleration due to gravity (-32 ft/s^2)$

 v_i = initial velocity

 h_i = initial height (beginning of the problem)

t = time (from initial height to final height)

1. An acrobat is shot upward from a cannon at 32 ft/sec from an initial height of 4 ft. How long does it take for an acrobat to land in a safety net that's 20 feet above the ground?

2. In anger, you throw a calculator down from a 240 foot building with an initial velocity of 32 ft/sec. How long will it take to hit the ground?

Projectile Motion Formula

$$h(t) = \frac{1}{2}\alpha t^2 + v_i t + h_i$$

h(t) = final height (end of the problem)

 $a = acceleration due to gravity (-32 ft/s^2)$

 v_i = initial velocity

h_i = initial height (beginning of the problem)

t = time (from initial height to final height)

- 3. A pumpkin cannon launches your jack'o lantern with a vertical velocity of 96 ft/sec.
- **a.** How long will it take for the pumpkin to reach a height of 128 feet?

b. How long will it take the pumpkin to be in the air (total time before landing)?

- c. What is the maximum height of the pumpkin?
- 4.a) A projectile is shot straight upward from the ground with a velocity of 64 feet per second. How long will it take to hit the ground?

b. What is the maximum height of the projectile?

Analytic Geometry Quadratic Word Problems WS #2

Projectile Motion Formula

$$h(t) = \frac{1}{2}at^2 + v_i t + h_i$$

h(t) = final height (end of the problem)

a = acceleration due to gravity (-32 ft/s²) or $\left(-9.8 \, \text{m/s}^2\right)$

 v_i = initial velocity

h_i = initial height (beginning of the problem)

t = time (from initial height to final height)

$$h(t) = \frac{1}{2}(-32)t^2 + V(t+h)$$

$$h(t) = -16t^2 + V(t+h)$$

1. An acrobat is shot upward from a cannon at 32 ft/sec from an initial height of 4 ft.

How long does it take for an acrobat to land in a safety net that's 20 feet above the

ground?

$$k(t) = 20$$

$$V_{i} = 32 \text{ ft/s}$$

$$k_{i} = 4$$

$$t = 4$$

$$9 = 1$$
 $6 = -2$
 $-1 \times 1 = 1$
 $-1 \times 1 = 2$

$$-16(t-1)(t-1)=0$$

$$t-1=0 \mid t=1 \mid 20$$

$$t=1 \mid t=1$$

2. In anger, you throw a calculator down from a 240 foot building with an initial velocity of 32 ft/sec. How long will it take to hit the ground?

$$0 = -16(t+5)(t-3)$$

Projectile Motion Formula

$$h(t) = \frac{1}{2}\alpha t^2 + v_i t + h_i$$

h(t) = final height (end of the problem)

 $a = acceleration due to gravity (-32 ft/s^2)$

 v_i = initial velocity

h_i = initial height (beginning of the problem)

t = time (from initial height to final height)

3. A pumpkin cannon launches your jack'o lantern with a vertical velocity of 96 ft/sec.

a. How long will it take for the pumpkin to reach a

to reach a
$$h(t) = -16t + Vit + hi$$

b. How long will it take the pumpkin to be in the air (total time before landing)?

c. What is the maximum height of the pumpkin?

$$X = \frac{-b}{2a} = \frac{-96}{2(-16)} = 3$$

4.a) A projectile is shot straight upward from the ground with a velocity of 64 feet per second. How long will it take to hit the ground?

$$h(t) = 0$$

b. What is the maximum height of the projectile?

$$\frac{-b}{2a} = \frac{-64}{2(-16)} = 2$$

$$\frac{-b}{2a} = \frac{-64}{2(-16)} = 2$$

$$\frac{h(2) = -16(2)^{2} + 64(2)}{h(2) = 64 \text{ ft.}}$$

$$t = 2 \text{ seconds}$$