| Compare Numerator and Denominator to help determine Integral Rule(s) to apply | Example \#1 | Example \#2 |
| :---: | :---: | :---: |
| 1) Only 1 Term in the Denominator (regardless of degree differences between numerator and denominator) <br> Solution: Consider expanding and splitting up the terms into individual fractions and applying integral rule for each term separately. | $\int \frac{x^{4}-5 x^{3}+1}{2 x^{4}} d x$ | $\int \frac{4 e^{4 x}-e^{2 x}}{6 e^{3 x}} d x$ |
| 2) Multiple terms in the denominator and the Denominator has variable exponent degree that is 1 higher than the Numerator <br> Solution: Consider U-Substitution | $\int \frac{5 \boldsymbol{x}}{7 \boldsymbol{x}^{2}-4} d x$ | $\int \frac{2 x^{2}}{\sqrt[5]{3 x^{3}-4}} d x$ |
| 3) Multiple terms in the denominator and the Numerator has variable exponent that is Same degree OR Higher than the Denominator. <br> Solution: Consider Long Division and/or Synthetic Division | $\int \frac{4 \boldsymbol{x}-3}{\boldsymbol{x}-5} d x$ <br> Apply long division or synthetic division | $\int \frac{x^{4}+x-4}{x^{2}+2} d x$ <br> Apply long division (synthetic division does not apply) |
| 4) Multiple terms in the denominator and the Denominator has variable exponent that is higher than the Numerator by 2 or more degrees: <br> Solution: Consider ArcTrig Integral Rules | $\int \frac{1}{x^{2}-8 x+4} d x$ <br> Apply Arctan Integral Rule | $\int \frac{5 \boldsymbol{x}}{\sqrt{1-\boldsymbol{x}^{4}}} d x$ <br> Apply Arcsin Integral Rule |

