CCGPS Analytic Geometry Probability Test Review 2

- 1. The math club is electing new officers. There are 4 candidates for president, 5 candidates for vice-president, 2 candidates for secretary, and 1 candidate for treasurer. How many different combinations of officers are possible?
 - 2. A piggybank contains 2 quarters, 3 dimes, 4 nickels, and 5 pennies. One coin is removed at random.
 - a) What is the probability that the coin is a dime?
 - b) What is the probability that the coin is a dime or a nickel?
 - c) What is the probability that you choose a nickel and then a nickel? (without replacement)
 - d) What is the probability that the coin is not a quarter?
 - 3. Each of the letters of the word "ALGEBRA" is on a separate card. The cards have been mixed and placed in a box. If you select one card at random, what is the probability that its letter will be "A"?

4. A card is randomly selected from a standard deck of 52 cards. Find the indicated probability.

Hint: There are 4 jacks, 4 queens, 4 kings, 4 aces, 13 diamonds, 13 spades, 13 clubs, 13 hearts, 36 numbered cards, 26 red cards, and 26 black cards.

a) P(Face card)

12

b) P(Ace or a Diamond)

c) P(Black and Ace)

d) P(Black card or Face card)

Two cards are randomly selected from a standard deck of 52 cards (WITH REPLACEMENT). 5. Find the indicated probability. **Hint: There are 4 jacks, 4 queens, 4 kings, 4 aces, 13 diamonds, 13 spades, 13 clubs, 13 hearts, 36 numbered cards, 26 red cards, and 26 black cards.** b) P(Diamond and Diamond and Diamond) a) P(Jack and Heart) d) P(Black card and Numbered card) c) P(Red and King) 6. Two cards are randomly selected from a standard deck of 52 cards (WITHOUT REPLACEMENT). Find the indicated probability. **Hint: There are 4 jacks, 4 queens, 4 kings, 4 aces, 13 diamonds, 13 spades, 13 clubs, 13 hearts, 36 numbered cards, 26 red cards, and 26 black cards.** b) P(Face card and Face card and Ace) a) P(Jack of Hearts and Heart) d) P(Black Jack and Numbered card) d) P(Black Card and Red King) 7. The probability that a student plays tennis is 47%. The probability that a student plays tennis and Lacrosse is 16%. What is the probability that student plays Lacrosse, given that they play tennis? The probability that a high school senior drives to school is .81. The probability that a high school senior having a job and driving to school is .52. What is the probability that high school senior will have a job, given that they drive to school? For #9 - 13, refer to the following table. 9) P (Male) = Subtotal Male Female 40 20 **Blue Eyes Green Eyes** 10 80 10. P (Green Eyes) = Subtotal

11.P(Green Eyes | Male) =

12. P(Male | Green Eyes) =

CCGPS Analytic Geometry Probability Test Review 2

- 1. The math club is electing new officers. There are 4 candidates for president, 5 candidates for vice-president, 2 candidates for secretary, and 1 candidate for treasurer. How many different combinations of officers are possible?

- 2. A piggybank contains 2 quarters, 3 dimes, 4 nickels, and 5 pennies. One coin is removed at random.
 - a) What is the probability that the coin is a dime?
 - b) What is the probability that the coin is a dime or a nickel? $\frac{3}{14} + \frac{4}{14} = \frac{7}{14}$ or $\frac{1}{2}$
 - c) What is the probability that you choose a nickel and then a nickel? (without replacement)
 - d) What is the probability that the coin is not a quarter?

- 3. Each of the letters of the word "ALGEBRA" is on a separate card. The cards have been mixed and placed in a box. If you select one card at random, what is the probability that its letter will be "A"?

4. A card is randomly selected from a standard deck of 52 cards. Find the indicated probability. **<u>Hint:</u> There are 4 jacks, 4 queens, 4 kings, 4 aces, 13 diamonds, 13 spades, 13 clubs, 13 hearts, 36 numbered cards, 26 red cards, and 26 black cards.**

a) P(Face card)
$$\frac{12}{52} = \frac{3}{13}$$

c) P(Black and Ace)

looking
$$\frac{2}{52}$$
 or $\frac{1}{26}$ the overlap

b) P(Ace or a Diamond)

$$\frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13}$$
Black card or Edge card

d) P/ Black card or Face card)

$$\frac{26}{52} + \frac{12}{52} - \frac{6}{52} = \frac{32}{52} = \frac{8}{52}$$

5.

$$\frac{13}{52} \cdot \frac{13}{52} \cdot \frac{13}{52} = \boxed{\frac{1}{64}}$$

d) P(Black card and Numbered card)

$$\frac{26}{52} \cdot \frac{36}{52} = \frac{9}{26}$$

Two cards are randomly selected from a standard deck of 52 cards (WITH REPLACEMENT).

Find the indicated probability. **Hint: There are 4 jacks, 4 queens, 4 kings, 4 aces, 13 diamonds,

$$\frac{1}{52} \cdot \frac{12}{51} = \boxed{\frac{1}{221}}$$

$$\frac{12}{52} \cdot \frac{11}{51} \cdot \frac{4}{50} = \boxed{\frac{22}{5525}}$$

d) P(Black Card and Red King)

$$\frac{2}{52} \cdot \frac{36}{51} = \frac{6}{221}$$

7. The probability that a student plays tennis is 47%. The probability that a student plays tennis and Lacrosse is 16%. What is the probability that student plays Lacrosse, given that they play tennis?

The probability that a high school senior drives to school is .81. The probability that a high school senior having a job and driving to school is .52. What is the probability that high school senior will have a job, given that they drive to school?

For #9 - 13, refer to the following table.

	Male	Female	Subtotal
Blue Eyes	40	[*] 20	60
Green Eyes	10	80	90
Subtotal	50	100	150
denominators.			

9) P (Male) =
$$\frac{50}{150} = \frac{1}{3}$$

10. P (Green Eyes) =
$$\frac{90}{150} = \frac{3}{5}$$

11.P(Green Eyes | Male) =

12. P(Male | Green Eyes) =
$$\frac{16}{90}$$

13) Male and Green eyes are dependent $P(M|G) \neq P(G|M)$